
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

MINIMIZATION OF SOPs FOR BI-DECOMPOSABLE
FUNCTIONS and NON-ORTHODOX/ORTHODOX FUNCTIONS

by

Birol Ulker

March 2002

 Thesis Advisor: Jon T. Butler
 Second Reader: Herschel H. Loomis, Jr.

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Minimization of SOPs for Bi-decomposable functions and Non-orthodox/Orthodox
functions.
6. AUTHOR(S)
ULKER, Birol

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distrubition is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A logical function f is AND bi-decomposable if it can be written as)()(),(221121 XhXhXXf = , where X1

and X2 are disjoint. Such functions are important because they can be efficiently implemented. Also many benchmark functions

are AND bi-decomposable. Surprisingly, the minimal sum of products (MSOP) of f is not always obtainable by finding the

MSOP of h1 and h2 and applying the law of distributivity.

However, a special class of functions called orthodox functions, introduced by Sasao and Butler [1], do have this

property. This thesis focuses on orthodox functions, and the remaining non-orthodox functions.

It is shown how to build up orthodox functions from orthodox functions on fewer variables. An algorithm is

presented for generating families of non-orthodox functions. A test program is developed to test the results of the proposed

algorithm and also other programs are developed to conduct experiments with both orthodox and non-orthodox functions.

Results are presented that represent the first steps toward completely characterizing bi-decomposable functions that can be

efficiently implemented.

15. NUMBER OF
PAGES 148

14. SUBJECT TERMS
Bi-decomposable functions, Orthodox functions, Non-orthodox functions, Disjoint Bi-decomposition,
Minimum sum-of-products, Espresso

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

MINIMIZATION OF SOPs FOR BI-DECOMPOSABLE FUNCTIONS and NON-
ORTHODOX/ORTHODOX FUNCTIONS

Birol Ulker

Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Author: Birol Ulker

Approved by: Jon T. Butler, Thesis Advisor

 Herschel H. Loomis, Jr., Second Reader

Jeffrey B. Knorr, Chairman
Department of Electrical and Computer Engineering

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

A logical function f is AND bi-decomposable if it can be written

as , where X)()(),(221121 XhXhXXf = 1 and X2 are disjoint. Such functions are important

because they can be efficiently implemented. Also many benchmark functions are AND

bi-decomposable. Surprisingly, the minimal sum of products (MSOP) of f is not always

obtainable by finding the MSOP of h1 and h2 and applying the law of distributivity.

However, a special class of functions called orthodox functions, introduced by

Sasao and Butler [1], do have this property. This thesis focuses on orthodox functions,

and the remaining non-orthodox functions.

It is shown how to build up non-orthodox functions from orthodox functions on

fewer variables. An algorithm is presented for generating families of non-orthodox

functions. A test program is developed to test the results of the proposed algorithm and

also other programs are developed to conduct experiments with both orthodox and non-

orthodox functions. Results are presented that represent the first steps toward completely

characterizing bi-decomposable functions that can be efficiently implemented.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION AND BACKGROUND..1
A. INTRODUCTION..1
B. BACKGROUND ..3

1. Bi-decomposition..4
a. Disjoint Bi-decomposition...5
b. Non-disjoint Bi-decomposition...6
c. Methods to Determine the Type of Disjoint Bi-

decomposition..7
d. Number of the Functions with Bi-decomposition Property ..12

2. Espresso ..15
a. Keywords and Usage of Espresso ...17

II. NOTATION AND DEFINITIONS...21
A. LITERAL..21
B. PRIME IMPLICANT (PI) ..21
C. MINTERM AND MAXTERM ...22
D. CUBE NOTATION..22
E. STRONG AND WEAK MINTERMS..23
F. INDEPENDENT SET OF MINTERMS..23
G. DISTINGUISHED MINTERM ..24
H. ISOP (IRREDUNDANT SUM OF PRODUCTS)25
I. MSOP (MINIMUM SUM OF PRODUCTS)...25
J. SYMMETRIC FUNCTION..25
K. UNATE FUNCTION ...25
L. MAJORITY FUNCTION ...26
M. SELF DUAL FUNCTION...27
N. INCOMPLETELY AND COMPLETELY SPECIFIED FUNCTIONS...27
O. NP-EQUIVALENT..28
P. CONCLUSIONS OF THE CHAPTER..28

III. ORTHODOX FUNCTIONS ...29
A. DISJOINT COMPUTATION SCHEME HYPOTHESIS (DCSH)...........29

1. DCSH for f ∨ g..30
2. DCSH for f ^ g...32

B. SAMPLE ORTHODOX FUNCTIONS..34
C. THEOREMS AND OBSERVATIONS..36

1. Theorem 1 ...37
2. Theorem 2 ...37
3. Theorem 3 ...38

D. CONCLUSIONS OF THE CHAPTER..39

IV. NON-ORTHODOX FUNCTIONS...41

 vii

A. FOUR-VARIABLE NON-ORTHODOX FUNCTIONS42
1. Properties of the 4-Variable Non-orthodox Functions43

B. CREATING A NON-ORTHODOX FUNCTION.......................................43
1. Discussion for Non-orthodox Functions...44
2. Steps of the Algorithm 3 ..46
3. Verifying the Non-orthodox Function Property50

C. CONCLUSIONS OF THE CHAPTER..51

V. EXPERIMENTAL RESULTS..53
A. YARATNON.JAVA...53
B. FAMILY.JAVA..53
C. SONKARAR.JAVA...54
D. CARPIMTABLOSU.JAVA ..57
E. COMPARE.JAVA ...57
F. ESPRESSO2.JAVA ...57
G. USAGE OF THE JAVA PROGRAMS AND ESPRESSO IN

EXPERIMENTS ..58
H. OBSERVATIONS OBTAINED FROM EXPERIMENTS........................63

1. Lemma 1 ...63
2. Lemma 2 ...64
3. Lemma 3 ...66
4. Lemma 4 ...68
5. Lemma 5 ...68
6. Observation 1 ...70
7. Observation 2 ...71
8. Conjecture 1 ...74
9. Conjecture 2 ...75
10. Non-orthodox Functions with 2n-variable.....................................76

a. 6-variable Non-orthodox Functions.......................................76
b. Simplification by Applying the Law of Distrubitivity and

Without Applying the Distrubitivity..79

VI. CONCLUSIONS AND RECOMMENDATIONS...83
A. CONCLUSIONS ..83
B. FUTURE RESEARCH RECOMMENDATIONS......................................85

LIST OF REFERENCES..87

APPENDIX A. YARATNON.JAVA ..89

APPENDIX B. FAMILY.JAVA ...97

APENDIX C. SONKARAR.JAVA...103

APPENDIX D. CARPIMTABLOSU.JAVA..107

APPENDIX E. COMPARE.JAVA...111

APPENDIX F. ESPRESSO2.JAVA ...117

INITIAL DISTRIBUTION LIST ...125

 viii

LIST OF FIGURES

Figure 1. Disjoint Bi-decomposable function. ..5
Figure 2. Non-disjoint Bi-decomposable function ..7
Figure 3. Karnaugh map of an OR bi-decomposable function..8
Figure 4. An ON-set input file for Espresso..17
Figure 5. Typical output file of Espresso. ...18
Figure 6. Function f, 312321),,(xxxxxxf +=21
Figure 7. (a) Shows the first MIS (b) Shows the second MIS...23
Figure 8. Karnaugh map representation of the function f, minterms that denoted with

are the distinguished minterms. ...24
Figure 9. Maximal independent set is not always the set of Distinguished minterms. ...24
Figure 10. Karnaugh map representation of a unite function f..26
Figure 11. Minterms of a majority function. ...26
Figure 12. Karnaugh map representation of Self dual function f.27
Figure 13. An incompletely specified function on 3-variables. ..28
Figure 14. (a) Karnaugh Map for function f (b) Karnaugh Map for function g (c)

Karnaugh Map for the new obtained function. ..31
Figure 15. 4-variable counterexample...33
Figure 16. An orthodox function that belongs to the three or fewer variables subclass. ..35
Figure 17. An orthodox function that belongs to the unate function subclass.35
Figure 18. An orthodox function that belongs to symmetric function subclass................36
Figure 19. Karnaugh map representations...38
Figure 20. Karnaugh map representation of function f (the minterms that denoted by

“ ” are the distinguished minterms). ...39
Figure 21. Set of the all functions divided among orthodox and non-orthodox

functions...41
Figure 22. Four variables non-orthodox functions. ...42
Figure 23. 4-variable non-orthodox function. Dashed lines show the non-essential

PIs, solid lines show essential PIs..45
Figure 24. Middle two rows of Figure 21. ..45
Figure 25. 6-variable non-orthodox function. ...52
Figure 26. Usage of the java programs to determine the 6-variable non-orthodox

functions...60
Figure 27. Usage of the java programs to determine the penalty between

minimization with law of distributivity and conventional minimization.........61
Figure 28. Karnaugh map representation of . ..64 yXf)(
Figure 29. Karnaugh map representation of

42433213213214321),,,(xxxxxxxxxxxxxxxxxf ++++=65
Figure 30. Karnaugh map representation of . ..66 yXf ∨)(
Figure 31. (a) Shows the PIs of the function f (X) (b) Shows the PIs of function f

(X) ⊕ y. ..67

 ix

Figure 32. (a) Minterms of x5 NP01 (b) Minterms of Voight and Wegner’s [4]
counterexample. ...71

Figure 33. (a) Karnaugh map representation of f1 (b) Karnaugh map representation
of 1f ..74

Figure 34. A 6-variable non-orthodox function with 13 don’t cares.................................77
Figure 35. A 6-variable non-orthodox function with 14 don’t cares.................................79

 x

LIST OF TABLES

Table 1. All 2-variable functions. ..13
Table 2. NP-equivalence representation of three variable functions.14
Table 3. Summary of the two, three and four variables functions.15
Table 4. Minterms and Maxterms for 3-variable logic function f(x,y,z).22
Table 5. Percentage of the Non-orthodox functions within 4 to 10-variable

functions...42
Table 6. The weak minterms..47
Table 7. The strong minterms. ...49
Table 8. All the minterms that belong to the essential PIs of the 6-variable non-

orthodox function that is generated by Algorithm 1..50
Table 9. Cube notations of the non-essential PIs of f...55
Table 10. Type of the resultant function obtained from the logical OR of two disjoint

functions...68
Table 11. Results for complementation of the chosen non-orthodox functions.72
Table 12. Results for logical AND operation between all 4-variable non-orthodox

functions and randomly chosen orthodox functions.75
Table 13. Average requirement computation time for minimization with Espresso.81

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

To my thesis advisor, Prof. Butler, I would like to express my deepest thanks for

all your support, guidance, confidence and patience. You were always near by me

whenever I have needed you throughout my thesis work.

To my second reader, Prof. Loomis, knowing to have such a second reader like

you always made me comfortable. Thank you for your assistance and various helps.

To my closest friends, Lieutenant Junior Grade Tolga Demirtas and Cihat Eryigit

(sir), I will never forget your friendship and helps. You never refused to help me even in

the late midnights.

To my beloved wife, Filiz, who has always stood by me, I owe you everything. I

would not finish this challenging journey without you and without all your support,

encouragement, and patience. You spent your nights to wait for me in front of a TV even

without understanding the language. Words are not enough for me to express my

appreciation.

Finally, thank you God for helping me.

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

EXECUTIVE SUMMARY

A logic function f is AND bi-decomposable if f can be written

as , where X and Y don’t share any variables and ∧ is the AND

operation. Recently, there has been interest in such functions because many practical

functions (e.g. benchmark functions) have this property [1, 6]. This interest is also

inspired by the prospect that a minimum sum-of-products expression can be efficiently

computed by minimizing each subfunction separately and applying the law of

distributivity. That is, a divide-and-conquer algorithm can be applied that yields

significantly reduced computation times.

)()(),(21 YhXhYXf ∧=

Surprisingly, the divide-and-conquer algorithm does not always yield a minimal

sum-of-products expression. Counterexamples have been shown [1, 6] where this

algorithm fails. In all known counterexamples for practical problems, however, there is a

small difference between the minimal sum-of-products expression and the expression

obtained by the divide-and-conquer algorithm (about 4% in terms of PIs). Thus, it is an

open question of whether this difference is small for all functions. Also, no

characterization is known for those functions for which the divide-and-conquer algorithm

fails to produce a minimal sum-of-products expression. The goal of this thesis is to

address these questions.

There are functions that always yield a minimum sum-of-products expression

using the divide-and-conquer algorithm. They are called orthodox functions, which were

introduced by Sasao and Butler [1]. The importance of orthodox and non-orthodox

functions is demonstrated in this thesis.

There are many minimizing tools. They try to give the best computation time and

most efficient solution to logical designers. Designers usually deal with complex

functions with many logical gates. Each logical gate requires a certain number of

transistors depending on the technology used, and also each transistor requires a certain

amount of room on chip. For example, in cmos technology a designer needs at least 6

transistors to build a 2-input AND gate, 6 transistors for a 2-input OR gate and 2

transistors for a 2-input NOT gate [9]. The required space for each of these gates depends
 xv

on the fabrication technology. Minimizing tools usually use the law of distributivity to

provide the most improved computation time for the minimization of the logical

functions, since most of the practical functions have an AND bi-decomposition property.

But, as specified, not all the functions yield the minimum sum-of-products expression

when the law of distributivity applied. So that, when we try to realize a logical design, we

use more transistors than needed and thus more space than needed.

This thesis focuses on non-orthodox functions on 4 and 6-variables and orthodox

functions on 2, 3 and 4-variables. This research may be divided into four parts.

• Determination of functions with the bi-decomposition property and the

type of the bi-decomposition. To achieve this goal, several algorithms are

introduced in this thesis.

• Determination of orthodox functions and characterization of their

properties. This goal is accomplished by investigating known orthodox

functions.

• Determination of the non-orthodox function and a characterization of their

properties. To accomplish this goal, an algorithm is introduced. Functions

created by this algorithm are used to explore the properties of non-

orthodox functions.

• Demonstration of results observed from experiments with orthodox and

non-orthodox functions.

The results obtained from this research can be divided as follows.

• The introduced algorithms and their applications.

• Results that are obtained from these algorithms.

Since orthodox and non-orthodox functions are new (they were introduced only

two years ago [1]), there is not much background information and research in this area.

Thus, a necessary part of this thesis work was the development of programs to investigate

the new types of functions. Several algorithms and their applications are introduced.

Algorithm 3, YaratNon.java, was developed to create non-orthodox functions.
 xvi

SonKarar.java was developed to determine types of functions (orthodox or non-

orthodox). Espresso2.java was developed to conduct logical computations between

functions. Minimization tool Espresso used to minimize the functions.

This experimental research has helped to produce new lemmas, observations, and

conjectures for orthodox and non-orthodox functions. They can be summarized as

follows.

• Logically ANDing a non-orthodox (orthodox) function with a literal yields

a non-orthodox (orthodox) function.

• Logically ORing a non-orthodox function with a literal yields a non-

orthodox function.

• Logically EXORing a non-orthodox function with a literal yields a non-

orthodox function.

• Complementing a non-orthodox function on 4 or 6-variables tends to

produce an orthodox function (self-dual non-orthodox functions are an

exception) (from experimental evidence). It appears that this does not

generalize to functions with more variables.

• Logically ORing two functions on a disjoint set of variables yields a non-

orthodox function if and only if at least one of the two functions are non-

orthodox.

• Logically EXORing two functions on a disjoint set of variables yields a

non-orthodox function if and only if at least one of the two functions are

non-orthodox.

• Logically ANDing two functions on a disjoint set of variables yields a

non-orthodox function if and only if at least one of the two functions are

non-orthodox (from experimental evidence).

 xvii

• It is shown that the counterexample that was proposed by Voight and

Wegner [6], is closely related with Sasao and Butler’s [1] counterexample

which is the simplest known non-orthodox function.

• The penalty paid by using the law of distributivity to minimize the

functions with AND bi-decomposition property, where each subfunction is

non-orthodox, grows when the number of the variables of the function

grows (from experimental result, it be as large 19 product terms for a 12-

variable AND bi-decomposable function).

• Two representative functions are proposed. One of them has 13 don’t

cares and the other one has 14 don’t cares. They show all 6-variable non-

orthodox functions in a compact form that were discovered during the

experimental research. A 6-variable non-orthodox function can be

obtained from these representatives by assigning values to the don’t cares.

Unfortunately, not all 6-variable non-orthodox functions were discovered.

The results that are presented in this thesis represent the first steps toward

completely characterizing AND bi-decomposable functions, where distributivity yields a

minimal sum-of-products expression and algorithms are introduced in this thesis show a

way to determine the orthodox and non-orthodox functions.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

I. INTRODUCTION AND BACKGROUND

A. INTRODUCTION

Minimization is one of the most important issues in logical design. When we

decide to develop a circuit to perform a certain task, one of the most important steps is to

create this circuit with the minimum number of logical elements, since this reduces the

cost, area and latency issues. However, minimization may require too much time,

affecting the circuit’s cost.

There are many minimization tools. Each of them uses a different approach to

solve the minimization problem. Considering the speed of the minimization process,

those that split the functions into components and minimize each component separately

yield the highest efficiency.

To split a function into components, the function has to be decomposable. A logic

function f has a disjunctive decomposition if it can written

as , where))(),...,(),((2211 nn XhXhXhgf = 0...21 =∩∩∩ nXXX . Disjunctive

decompositions can be further categorized by the number of arguments of g. For

example, let g be a 2-variable AND function. Then, the decomposition property can be

specified as AND bi-decomposition. Another type of decomposition is sum-of –products.

But why the sum-of-products form? Most of the simplification tools give their

outputs in sum of products form, which consists of AND, OR and NOT gates. One might

want to use NAND and NOR gates in the resultant function of the simplification process

due to the fact that they are faster than ANDs, ORs and NOTs. The reason might be

explained by help of an example. Let’s consider the following logical propositions “I will

not marry with you if you are not friendly or not thoughtful and also you are not

handsome or not blond”, “I will marry with you if you are friendly and thoughtful or if

you are handsome and blond” which one sounds more natural? As we can observe from

the sample expressions, using sum of products form is the most natural way to produce a

logical expression. Also, we can always obtain the equivalent NANDs and NORs

expressions by inserting NOTs between ANDs and ORs.

1

If a function has the AND bi-decomposition property, it is tempting to believe that

its minimum sum of products representation can be obtained by applying the

simplification processes to the components h1, h2 separately and applying the law of

distributivity.

It is obvious that to simplify a function by applying the law of distributivity

approach is less complicated and less time consuming then simplifying the function

directly, but it is not true that we always have the minimum solution for the functions we

want to simplify. This fact has been proved by Voight and Wegner [5] in 1989. They

showed that a logical function with AND decomposition property does not necessarily

give us the minimum sum of products representation when we simplify it by applying the

law of distributivity.

After the first introduction of this idea, Sasao and Butler [1] took over the

research. They introduced the concepts orthodox and non-orthodox functions in 2000.

They showed that certain functions always give us the MSOP expression when we apply

the law of distributivity. These are called orthodox functions. They include all 2 and 3-

variable functions, unate functions, all symmetric functions, a few random functions and

many benchmark functions.

 The goals of this thesis are summarized as follows:

• To increase our knowledge about both orthodox and non-orthodox

functions.

• To determine their behavior under certain conditions, such as after an

AND operation between two orthodox and non-orthodox functions or an

OR operation between a non-orthodox and an orthodox function.

• To determine other special types of functions that are non-orthodox

function (Are threshold functions non-orthodox?).

• To determine an algorithm to create n-variable non-orthodox functions.

• To create an algorithm to perform experiments with the newly created

functions.

2

To accomplish these purposes, it was necessary to consider

• Decomposition property of the functions,

• Known orthodox functions and their behaviors,

• Known non-orthodox functions and their behaviors,

• Experimental approaches to be able to determine new behaviors for both

orthodox and non-orthodox functions.

The results obtained from this thesis work may be summarized as follows:

• An algorithm, Algorithm 3, is created from the studies of 4-variable non-

orthodox functions. Algorithm 3 used to create n-variable non-orthodox

functions. These functions used to perform experiments.

• Two algorithms are proposed. One of them is to determine the OR-type bi-

decomposition and the other is EXOR-type bi-decomposition.

• By using Java language [10], a series of programs created. These

programs are used in different steps of the experiments (i.e. to logically

AND or OR two functions, to determine the types of the resultant

functions of these logical operations as being either orthodox or non-

orthodox).

• Results of the experiments that were performed with 24,576 6-variable

and 512,000 8-variable functions, are used to develop new theorems,

lemmas and observations for non-orthodox and orthodox functions

• Experimental results determined family representatives for some 6-

variable non-orthodox functions.

B. BACKGROUND

This thesis focuses on orthodox and non-orthodox functions. Such functions are

important in the context of functions that have an AND bi-decomposition. In this section,

we discuss bi-decomposition and formally introduce orthodox and non-orthodox

3

functions. Also, we discuss the Disjoint Computation Scheme Hypothesis [6], as it is an

important part of precedent for this thesis.

 Orthodox and non-orthodox functions have special meaning in the context of

Disjoint Computation Scheme Hypothesis, denoted as DCSH. The main idea of this

hypothesis is nothing more than the application of distributivity law. DCSH suggests that

if there are two functions that have disjoint sets of variables then the AND or OR of these

two functions when simplified is no better than when taking the optimal computations

scheme of the two functions seperately.

It is specified in the introduction that to be able to apply this hypothesis to a

function, the function has to have a property known as decomposition. This thesis

narrows down its focus to the functions that have the bi-decomposition property (instead

of general decomposition). So, the following sections mostly related to bi-decomposition.

Besides that, since the bi-decomposition property is just a subcomponent of the

decomposition property, the reader will encounter both decomposition and bi-

decomposition concepts for sake of completeness.

1. Bi-decomposition

Decomposition of a Boolean function means breaking the large logic blocks into

small ones, without changing the functionality of the original function. For example, the

sum of products form of a function f is a decomposition of f into the OR of product terms,

where each product term is the AND of variables or complements of variables. An

advantage of such decomposition is the large body of knowledge and CAD tools

available for their design (e.g. Espresso [8]). Another example is a fanout-free

representation of a function, where no gate is allowed to drive more than one other gate.

Not all functions have a fanout-free decomposition. An advantage of fanout-free

representations is that they are easily tested.

Definition 1: Function f(X) has a bi-decomposition if it can be expressed as

where * is the AND, OR or EXOR (exclusive or) on two variables.

),()()(2211 XhXhXf ∗=

4

For example function f, where 43214321),,,(xxxxxxxxf += , has OR bi-

decomposition property, since we can specify h1(X) as x1x2 , h2(Y) as x3x4 and g as the OR

operator.

a. Disjoint Bi-decomposition

In this section, we consider a special case of bi-decomposition.

Definition 2: Function f(X) has a disjoint bi-decomposition, if f(X) has a

bi-decomposition,

),()()(2211 XhXhXf ∗=

where X1 and X2 are disjoint (share no variables).

For example, same function f can be used, since it has an OR bi-

decomposition property on two sets of variables {x1, x2}, {x3, x4} that do not overlap. A

function with a disjoint bi-decomposition can be realized by the circuit shown in Figure

1. Here, g represents the function *.

f

X2

X1

g

h2

h1

Figure 1. Disjoint Bi-decomposable function.

5

Definition 3: Function f(X) has an AND, OR or EXOR disjoint bi-

decomposition, if f(X) has a bi-decomposition,

),()()(2211 XhXhXf ∗=

where * is AND, OR, or exclusive OR, respectively, and X1 and X2 are disjoint.

Figure 1 shows the form of the circuit that realizes a function with a

disjoint bi-decomposition. For example, the function in the running example has a

disjoint OR bi-decomposition.

Sasao and Butler [1] have shown a synthesis technique for functions with

disjoint bi-decompositions. It is known that, as the number of the variables increases, the

fraction of functions with disjoint bi-decompositions becomes vanishingly small. In spite

of this, the number of functions with bi-decompositions used as benchmark functions for

the evaluation of logic synthesis techniques is quite large. This suggests that, although bi-

decompositional functions are a small fraction of all functions, they are important in

practical design applications.

b. Non-disjoint Bi-decomposition

Definition 4: A Boolean function f has a non-disjoint bi-decomposition if

and only if f can be represented as follows,

 f (X) = f (X1, X2, y) = g (h1 (X1,y), h2 (X2,y)),

where g is any 2-input logic function and X1 ∩ X2 = 0 and y is a single variable.

Figure 2 shows the circuit realization of a function with a non-disjoint bi-

decomposition. In the case of non-disjoint bi-decompositions, it is more difficult to find

the component functions than in the case of disjoint bi-decompositions.

 Consider the function f, where 2131321),,(xxxxxxxf += . The function f

can be represented as f (X) = f (X1, X2, x1) = g (h1 (X1, x1), h2 (X2, x1)), where X1∩X2 = 0

and g is OR operand so that f has an OR bi-decomposition. This function also can also be

represented as follows; 2131321),,(xxxxxxxf ⊕= and))((),,(2131321 xxxxxxxf ++= .

Thus, f has both OR and EXOR bi-decomposition [1].

6

y

X2

X1

g

h2

h1

Figure 2. Non-disjoint Bi-decomposable function

c. Methods to Determine the Type of Disjoint Bi-decomposition

In this section, we show how to determine the component functions of the

functions that have an OR or EXOR disjoint decomposition. This is sufficient for finding

the component functions of a function with any kind of disjoint decomposition, since a

function f has an AND disjoint bi-decomposition if and only if f has the OR disjoint bi-

decomposition.

1. Algorithm for functions with an OR-type bi-decomposition.

A function f has the OR disjoint bi-decomposition property, f (X1, X2) = h1 (X1) OR h2

(X2), if and only if every product term of ISOP (irredundant sum-of-products) consists of

literals belonging to input set X1 only or X2 only. We can use several methods to

determine if a function has an OR bi-decomposition property or not;

• Using the Karnaugh map

The function should have all 1’s grouped in a subset of

columns and a subset of rows and also none of these columns and rows can contain 0’s

[7].

7

1 0 1 0

1 0 1 0

1 0 1 0

1 1 1 1

ab

00

01

11

10

00 01 11 10cd

Figure 3. Karnaugh map of an OR bi-decomposable function

Figure 3 shows a function f, dcbadcbaf +⊕=),,,(, that

has the OR bi-decomposition. In this case, f can be represented as

 where,)()(),(221121 XhXhXXf += dcXhbaXh =⊕=)(,)(2211 , and

. This method is useful for functions that have a small number of inputs.

{ baX ,1 = }
{ }dcX ,2 =

• Using the ISOP representations of the functions

The ISOP representation of a function is the OR of prime

implicants (PIs), none of which are redundant. Application of this method relies on

examining the PIs with respect to common literals and creating subsets with the literals of

the PIs that have at least one common literal.

Let { }mPPPPI ,...,, 21= be the set of PIs associated with the

given ISOP. The algorithm for determining the OR bi-decomposition of f forms disjoint

subsets of X, the set of variables. The algorithm examines each P''
2

'
1 ,...,, pXXX

,, '
2

'
1 XX

i, in turn

modifying etc. as it proceeds.

8

ALGORITHM 1

1. ←1X φ

2. for i = 0 to m do

 if (Pi shares a variable with any) '
jX

coalesce into one subset all that share a variable

with Pi.

 else

 form a new subset containing all variables in Pi.

 end

3. if (there is one subset)

 stop (failure)

 else

←)(1 Xh
'
1X

OR of all a Pi’s such that Pi depends on

variables in .

 ←)(2 Xh OR of all other Pi’s.

 stop (success).

For example, apply the algorithm to the

function . Let Pdebcabdcbaf ++=),,,(1= ab, P2=bc and P3=de. Create the first subset

with the literals of P1 call it X1, { }ba,1X = . Examine P2 with respect to X1. Since they

share the literal b, add the literals of P2 to subset X1. Proceed by examining the product

term P3 with respect to subset X1. Since it does not have common literals with subset X1,

create a new subset called X2. X2 consists of the literals of P3, i.e. . Since the

total number of the subsets is 2, function f has an OR bi-decomposition, and

it can be written as

{ edX ,2 = }

)1X() 12 hX,(1Xf = + , where)(22 Xh { },,, cba=1X

{ } bcabXhe +dX ==2)(,, 11 , and .de)(22 Xh =

This method can also be used for the determination of the

OR decomposition property. As it is specified earlier in the discussion, bi-decomposition

9

is a subset of decomposition that requires exactly two subfunctions, while decomposition

has more subfunctions.

2. Exor type bi-decomposition algorithms. Among the

different ways of representing an arbitrary function is the Reed-Muller expression. In this

representation, we have a standard expression for the representation of the all n-variable

functions, called the positive polarity Reed-Muller expression (PPRM). It is formed as

follows;

311321122211021 ()...(),...,,(xxaxxaxaxaxaaxxxf nnn ⊕⊕⊕⊕⊕⊕=

nn xxxa 21...12⊕nnn xxa)... 1...1... ⊕⊕⊕ , where { }.1,0∈ia For a given function f, the

coefficients are uniquely determined.

A given function f has the EXOR bi-decomposition

property, EXOR , if and only if every product in the PPRM

for f consists of literals that belong to set X

)(),(1121 XhXXf =)(22 Xh

1 only or X2 only. As in the OR bi-

decomposition case, we have different ways to determine whether a function has this type

of bi-decmposition.

• Using the Reed-Muller expression

 Like ISOP’s, all implicants in a Reed-Muller PPRM are

irredundant. As in the usage of the ISOP representation for determining the OR bi-

decomposition property, this method also relies the examination of the product terms

with respect to common literals and creating subsets with the literals of the product terms

that have at least one common literal. At the end of the process, we should have at least

two subsets of literals to be able to state that the function under examination has the

EXOR decomposition property. If we have 2 or more subsets of disjoint variables, then

the function has the EXOR bi-decomposition property.

Let ,ix),...,2,1(ni = , be the input variables of f. Let

 be the PPRM for function f, where tppp ⊕⊕⊕ ...21 ip),...,2,1(ti = are products. The

algorithm forms disjoint subsets of X, the set of variables. The algorithm

examines each P

''
2

'
1 ,...,, pXX

,, '
2

'
1 XX

X

i, in turn modifying etc. as it proceeds.

10

ALGORITHM 2

1. ←1X φ

2. for i = 0 to t do

 if (pi shares a variable with any) '
jX

coalesce into one subset all that share a variable

with Pi.

 else

 form a new subset containing all variables in pi.

 end

3. if (there is one subset)

 stop (failure)

 else

←)(1 Xh EXOR of all a pi’s such that pi depends on

variables in . '
1X

 ←)(2 Xh EXOR of all other pi’s.

 stop (success).

For example, apply the algorithm to the function f,

. Let Paecdabedcbaf ⊕⊕=),,,,(1= ab, P2=bc and P3=de. Create the first subset with

the literals of the P1, call it X1, where { }baX ,1 = . Examine P2 with respect to X1 since they

do not share any literals create a new subset called X2. X2 consists of the literals of P2,

.{ }dcX ,2 =

)()(),(221121 XhXhXXf ⊕=

 Continue examining the product terms with P3, examine it with respect to X1

first, since it does have a common literal with subset X1, namely b, add the literals of the

P3 to subset X1. Now we’re done with the examination of the product terms and we have

two subsets X1 and X2. Since the number of the subsets is more than one we can state that

function f has the EXOR bi-decomposition property and we can represent it as following

 where { } { }dcXeb ,,, 2aX ,1 == , and

.

aeabXh ⊕=)(11

cdXh =)(22

11

d. Number of the Functions with Bi-decomposition Property

As specified earlier, there are two types of bi-decompositions; disjoint and

non-disjoint. In the previous sections, different algorithms are presented to find various

bi-decompositions of a function. In the case of disjoint bi-decomposition, it is easy to

determine the type of bi-decomposition. But, this is not the case for the non-disjoint bi-

decomposition.

Before presenting the numerical results consider the following.

Definition: Two functions, f1 and f2, are NP-equivalent if f2 can be

obtained from f1 by complementing and/or permuting variables of f1. For example,

211 xxf += is NP-equivalent to 212 xxf += , since f2 is obtained from f1 by interchanging

(permuting) x2 and x1.

All 2-variable functions have a bi-decomposition as shown in Table 1.

Consider the function , it is a function that depends on 1 of the 2 variables.

This function has the AND bi-decomposition property, since it can be represented

as , where = x

121),(xxxf =

)() 22 Xh(),(1121 XhXXf =)(11 Xh 1 and = 1. It also has an OR bi-

decomposition, since it can be expressed as

)(22 Xh

,(21 XX)()() 2211 XhXhf ∨= where

and . Similarly, it has an EXOR bi-decomposition. 111)(xX = (2 Xhh 0)2 =

12

2-variable function # of variables

function depend

on

Type of bi-decomposition

0 0

1 0

1x 1 AND bi-decomposition

2x 1 AND bi-decomposition

1x 1 AND bi-decomposition

2x 1 AND bi-decomposition

21xx 2 AND bi-decomposition

21 xx 2 AND bi-decomposition

21xx 2 AND bi-decomposition

21 xx 2 AND bi-decomposition

21 xx + 2 OR bi-decomposition

21 xx + 2 OR bi-decomposition

21 xx + 2 OR bi-decomposition

21 xx + 2 OR bi-decomposition

21 xx ⊕ 2 EXOR bi-decomposition

21 xx ⊕ 2 EXOR bi-decomposition

Table 1. All 2-variable functions.

In the case of three variable functions, we have a total of 256 logical

functions and these functions can divided into 16 NP-equivalence classes as shown in the

Table2 [3].

13

Representative function of the

NP-equivalence class

of

functions

Type of the bi-

decomposition

Property of the bi-

decomposition

x1 ⊕ x2⊕ x3

x1x2x3

x1 + x2 +x3

x1 (x2 +x3)

x1 + (x2 x3)

x1 (x2 ⊕ x3)

x1 + (x2 ⊕ x3)

x1 ⊕ x2 x3

2

8

8

24

24

12

12

24

EXOR

AND

OR

AND

OR

AND

OR

EXOR

DISJOINT BI-

DECOMPOSITION

x1x2x3 + x1x2x3

(x1+x2+x3) (x1+x2+x3)

x1x3 + x1x2

x1x2x3 + x2x3

(x1+x2+x3) (x2 +x3)

4

4

24

24

24

 NON-DISJOINT

BI-

DECOMPOSITION

(one variable

common)

x1x2 + x2x3 + x3x1

x1x2 + x2x3 + x1x3 + x1x2x3

x1x2x3 + x1x2x3 + x1x2x3

8

8

8

 NO NON-

DISJOINT BI-

DECOMPOSITION

(one variable

common)

Table 2. NP-equivalence representation of three variable functions.

Table 3 [3] shows the number of the NP-equivalence classes and type of

the bi-decomposition that each class has for functions with two, three and four variables

as a summary.

14

Number of the variables n = 2 n = 3 n = 4

Number of the functions 16 256 65536

Number of functions with

Disjoint Bi-decomposition

AND

OR

EXOR

4

4

2

44

44

26

1660

1660

914

Number of functions with

Non-disjoint Bi-

decomposition

 0 80 3680

TOTAL 10 194 8094

Table 3. Summary of the two, three and four variables functions.

2. Espresso

The program Espresso is important in this thesis, since all the lemmas, conjectures

and theorems presented in Chapter V were inspired by the results of this software [8]. It

is discussed in detail here.

The most important portion of this thesis is the experimental research part, and for

conducting the experiments, a tool is needed that could minimize the functions under test

to their minimum sum of products in a reliable way and also with acceptable speed, since

the number of the functions that was planned to be dealt with was too large. In respect to

these conditions, available tools were evaluated and eventually Espresso was chosen.

 The primary reasons for choosing Espresso are

• More reliable results

• Short process time

• Free

• Available both for windows and unix environment

15

• Robustness (unlike other tools, it was developed by not a person but a big

team from University of California- Berkeley so that it is more robust.)

Espresso version 2.3 was released by Berkeley on 31 January 1988. It is based on

the Quine-McCluskey Method, which simplifies a logical expression that is in disjunctive

normal form, to obtain an equivalent minimal disjunction of conjunctions (sum of

products).

Since Espresso is based on the Quine-McCluskey Method, Quine-McCluskey

Method will be discussed briefly. The Quine-McCluskey Method is based on repeated

applications of the distributive law and the complement law (1=∨ aa).

For example, consider xzzyyxzyxxyz =+=+)(.

 The steps of the algorithm can be summarized as rewrite, reduction and selection

step.

Rewrite step: The first step in the minimization process according to Quine-

McCluskey method is to rewrite the minterms using 1s and 0s instead of the literals. This

new representation is called the bit string form [8].

Reduction step: In this step of the Quine-McCluskey method, pairs of the strings

are compared. If two bit strings agree in all bits and disagree in one bit (e.g. 111 and

101), they are combined. A table is formed by usage of the generated bit strings called

reduction table [8].

Selection step: After the accomplishment of reduction step, a table (selection

table) is formed. It has the original minterms as column headers. The reduction table is

examined to take the term with the fewest literals. This term becomes the first row of

selection table. The minterms that are used to obtain this term are marked by asterisks.

The minterms that are not labeled become the missing minterms and the terms from the

reduction table that have this/these missing minterm or minterms become the next rows

of the selection table [8].

16

a. Keywords and Usage of Espresso

Espresso takes a 2-level representation of a two-valued or multi-valued

logical expression and produces a minimal equivalent representation for this function.

Also, it automatically verifies that the minimal representation obtained at the end of the

process is equivalent to the original function.

Espresso reads the provided file, performs the minimization, and outputs

the result as a file (or it can prompt the result directly to the screen of the computer). The

user can provide the input function in different ways: he/she can use the ON-set

representation, ON-set and DC-set, ON-set and OFF-set or ON-set, OFF-set and DC-set.

ON-set refers to the minterms that imply the function value is a 1. OFF-set refers the

minterms that imply the function value is a 0. DC-set refers the minterms that are

unspecified, namely don’t cares. The default for Espresso is the ON-set. Figure 4

illustrates an example input file (for the function

).
),,,(

xyzw
wzxyzwyxyzwxwzyxwzyxwzyxwzyxzwyxwzyxwzyxf

+
++++++++=

.i 4

.o 1

0010 1

0011 1

0100 1

0101 1

1000 1

1001 1

0111 1

1011 1

1101 1

1111 1

.e

Figure 4. An ON-set input file for Espresso.

17

Figure 4 shows a very basic input file, which is sufficient for the

minimization of the function. If we go through the input file, we encounter keywords “.i”,

“.e” and “.o”.

• .i (number): Specifies the number of the input variables. In our

running example, it is 4 and thus the usage is “.i 4”.

• .o (number): Specifies the number of the output functions. In our

running example, it is 1, and thus the usage is “.o 1”.

• .e : Marks the end of the description of the product

terms.

Certain lines between the keywords .i and .e represent product terms of the

function. 0 stands for a complemented literal (i.e. ix) of the minterm and 1 stands for a

not complemented (i.e.). ix

Also, we can have comment lines, which do not have any effect in the

minimization process. These lines begin with the pound sign (#) into the line. These of

course are not the only keywords of the tool, but for our purpose, these are sufficient.

Figure 5 shows the output file of Espresso corresponding to the input file in Figure 4.

.i 4

.o 1

.p 5

-1-1 1

--11 1

100- 1

010- 1

001- 1

.e

Figure 5. Typical output file of Espresso.

18

As we can see in Figure 5, we have a new keyword, which is “.p”. This

keyword specifies the number of the PIs in the minimized sum-of-products expression of

the function. Since this output file belongs to our running example function f, we can

state that the MSOP for function f has 5 PIs. So the minimized equivalent of our running

example is zwywzyxzyxzyxwzyxf ++++=),,,(.

To invoke Espresso use the format espresso (inputfile-name).es >

(outputfile-name).out. As can be seen from the syntax, we use the “.es” extension for the

input files and “.out” extensions for the output files. Since this tool works in the Unix

operating system to create an input file, one can use either texteditor or vi editor of Unix.

Besides the keywords, Espresso has flags. One that was especially useful

in the research presented in this thesis is –Dexact. For 10 or more variable functions flag

-Dexact guarantees the minimum number of product terms at the end of the minimization

process. Also experiments showed that usage of this flag might cause excessive

computation time, particularly with 12 and more variable functions. In Chapter V, a table

will show the average computation times of Espresso for functions with different number

of variables.

After the introduction in this chapter of disjoint bi-decomposition and the

minimization tool, Espresso, notations and basic definitions are addressed in Chapter II of

this thesis.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

II. NOTATION AND DEFINITIONS

A. LITERAL

Let y be a switching variable; i.e. { }1,0∈y and let y be the complement of y. The

logical AND of two or more literals is a product or implicant. Product p is an implicant of

function f, if f is 1 whenever p is 1 [2].

Consider the following example; Let 3221321),,()(xxxxxxxfXf +== . It is clear

that and 21xx 32 xx

3

 are implicants of . However, so also is since)(Xf 31xx)(Xf is 1

whenever is 1. Further, 1xx 21xx is not an implicant of , since and)(Xf 0=f 1=21xx

when . 0103 =x21xx

B. PRIME IMPLICANT (PI)

Implicant p is a prime implicant of if the elimination of one or more literals

causes p not to be an implicant of .

)(Xf

)(Xf

A prime implicant of is an essential prime implicant if there exists an input

a, where but for all other prime implicants of .

)(Xf

0=1)(=ap)(' ap)(Xf

Consider, 312321),,(xxxxxxf += , Figure 6 shows the minterms and the prime

implicants of the function f. There are two PIs; p1 = x2 and 312 xxp = .

x1 x2

 x3

 0

 1

00 01 11 10

 1 1 1

 1 1

Figure 6. Function f, 312321),,(xxxxxxf += .

21

C. MINTERM AND MAXTERM

A minterm is a product term with n literals such that each variable appears exactly

once. On the other hand, a maxterm is a sum term with n literals such that each variable

appears exactly once [4]. Table 4 shows minterms and maxterms for a 3-variable logic

function, where variable set { }zyxX ,,= .

Minterms also can be named as ON-set and maxterms as OFF-set.

x y z f MINTERMS MAXTERMS

0 0 0 f(0,0,0)  zyx zyx ++

0 0 1 f (0,0,1)  zyx zyx ++

0 1 0 f (0,1,0)  zyx zyx ++

0 1 1 f (0,1,1)  yzx zyx ++

1 0 0 f(1,0,0) zyx  zyx ++

1 0 1 f (1,0,1) zyx  zyx ++

1 1 0 f (1,1,0) zxy  zyx ++

1 1 1 f (1,1,1) xyz  zyx ++

Table 4. Minterms and Maxterms for 3-variable logic function f(x,y,z).

D. CUBE NOTATION

A product term can be expressed in cube notation as follows. Each occurrence of

 in p is represented by a 1. Each occurrence of ix ix is represented by a 0. Missing

variables are represented by a -.

For example, the two 4-variable minterms 4321 xxxx and 4321 xxxx have the cube

representations 0100 and 1100, respectively. Note that these two minterms combine

together into a single product term, as follows.

22

43243214321 xxxxxxxxxxx =∨ .

The resultant product term, 432 xxx has the cube notation -100.

E. STRONG AND WEAK MINTERMS

Let m be a minterm of f. If the number of the 1’s in m is
2
n or more (or less), then

m is a strong (weak) minterm, where n is the number of variables of f.

For example, the minterms 01000 and 11010 are weak and strong minterms,

respectively. Minterm 001011 is both strong and weak.

F. INDEPENDENT SET OF MINTERMS

Let be the set of true minterms for function f. Then, is an

independent set of minterms of function f, if and only if no PI of f covers more than one

minterm in .

)(fM

)(fMI

)()(fMfMI ⊆

()fη is the number of the minterms in ; i.e.)(fMI ())(fMIf =η .

Consider the Karnaugh map representation of function f, xyyxzyxf +=),,(,

011,000

 in

Figure 7. This function has 4 different maximal independent sets of minterms;{ },

, and { . Minterms marked by stars in Figure1.4 shows two

sets. Note that

{ }111,001 { }111,000

() =f

}110,001

2η .

x y

 z

 0

 1

00 01 11 10

 1 1

 1 1

x y

 z

 0

 1

00 01 11 10

 1 1

 1 1

(a) (b)
Figure 7. (a) Shows the first MIS (b) Shows the second MIS.

23

G. DISTINGUISHED MINTERM

Given a function f, let be the set of true minterms of f. Then,

 is a set of distinguished minterms, if exactly one PI of f covers each

minterm in [1].

)(fM

)()(fMfMD ⊆

(fMD)

Consider the function f, where function 321321),,(xxxxxxf ++= . This function

has 3 distinguished minterms, namely 010, 100 and 001. Figure 8 shows the Karnaugh

map representation of the function f and the distinguished minterms of it.

x y

 z

00

01

00 01 11 10

 1 1 1 1

 1 1 1

Figure 8. Karnaugh map representation of the function f, minterms that denoted with are
the distinguished minterms.

Note that a set of distinguished minterms is an independent set of minterms. The

converse is not true. Figure 9 shows a three variable function whose maximal

independent set has three minterms (marked by stars). However this set is not a set of

distinguished minterms.

 00

 z

x y

01

 1 1 1

 1 1 1

00 01 11 10

Figure 9. Maximal independent set is not always the set of Distinguished minterms.

24

H. ISOP (IRREDUNDANT SUM OF PRODUCTS)

The logical OR of all products (implicants) of a function is the complete sum-of-

product (CSOP) of a function f. If we eliminate products from the CSOP of f to the point

where eliminating any remaining products will change the function yields an irredundant

sum of products (ISOP).

I. MSOP (MINIMUM SUM OF PRODUCTS)

Among all the ISOPs, one that has the fewest PIs is called a minimum sum of

products (MSOP). The cost of function f, ()fMSOP :τ is the number of the prime

implicants in the MSOP of a given function f, e.g. () 2: =fMSOPτ in Figure 6.

J. SYMMETRIC FUNCTION

A function f is symmetric in variables xi and xj if interchanging xi and xj leaves f

unchanged. For example, both and 321 xxx 321 xxx + are symmetric in x1 and x2. A

function is symmetric, if it is symmetric in all pairs of variables [2].
n
AS denotes a symmetric function, that has the logical value 1 if m of its n

variables are 1, where , and has the logical value 0 otherwise. Am ∈

Example; symmetric function can be written as follows,),,(3,1 zyxS

zyxzyxzyxxyzzyxf +++=),,(. f is 1 when 1 or 3 of its variables are 1, and is 0

otherwise.

K. UNATE FUNCTION

A function is positive in variable , if there exists a SOP

(conjunctive expression) for the function in which appears only in uncomplemented

form. is negative in , if there exists a SOP (conjunctive expression) for

the function in which appears only in complemented form. If f is either positive or

negative in , then it is said to be unate in . If a function is unate in each of its

variables, then this function called a unate function [2].

),...,,(21 nxxxf

)

ix

ix

ix

,...,,(21 nxxxf

ix

ix

ix

25

Consider the function f, 43214321),,,(xxxxxxxxf += , which is an unate function,

since it is positive in all its variables. Figure 10 shows the Karnaugh map representation

of function f.

Figure 10. Karnaugh map representation of a unite function f.

z w

x y

00

01

11

10

00 01 11 10

 1

 1

 1 1

 1

 1

 1

L. MAJORITY FUNCTION

Majority functions are a subclass of symmetric functions. A symmetric function f

is a majority function if and only if, the number of the variables is odd and f is 1 if and

only if more than half of the variables are 1 [2].

The symmetric function f, 3132213212),,(xxxxxxxxxf ++= is a majority

function, since 2 of the 3 variables must be 1 (true) for the whole function to be 1 (true).

Figure 11 shows the Karnaugh map representation of the function.

 x1 x2

 x3

 0

 1

00 01 11 10

 1 1 1

 1

Figure 11. Minterms of a majority function.

26

M. SELF DUAL FUNCTION

An arbitrary function f is said to be a self dual function if and only if

),...,,,(),....,,,(321321 nn xxxxfxxxxf = [2].

Consider the function 323121321),,(xxxxxxxxxf ++= . It is self dual. Since, this

function is the symmetric function , which is 1 if and only if 2 or 3 of the

variables are 1, complementing the variables of yields a function that is 1

if 0 or 1 of the variables are 1. But, this is also the complement of .

),,(3213,2 xxxS

),,(3213,2 xxxS

),,(3213,2 xxxS

 x1 x2

 x3

 0

 1

00 01 11 10

 1 1 1

 1

Figure 12. Karnaugh map representation of Self dual function f.

N. INCOMPLETELY AND COMPLETELY SPECIFIED FUNCTIONS

Let f be an incompletely specified symmetric function on n-variables given as

follows.

=),...,,(21 nxxxf 0 if all variables are 0

 =1 if one or zero variables are 0

 = - (don’t care) otherwise, where n , 2>

Figure 13 shows this function for the case n=3.

A completely specified function g is said to cover an incompletely specified

function f if g is 0 and 1 for all assignments of values to variables for which f is 0 and 1,

respectively [1].

27

 x3

x1 x2

 0

 1

00 01 11 10

 1 1 1 -

 0 - 1 -

Figure 13. An incompletely specified function on 3-variables.

O. NP-EQUIVALENT

Consider two functions; and . Function is NP-equivalent to

 if, can be obtained by a complementation and/or permutation of the

variables of .

)(Xf)(Xg)(Xf

)(Xg)(Xg

)(Xf

Consider the functions 21)(xxXf += and 21)(xxXg +=

)

, where .

Function is NP-equivalent to , since it is obtained from the permutation of the

variables of function . Also note that can be obtained from by a

complementation of variables.

{ }21 , xxX =

)(Xg

)(Xf)(Xg

)(Xf (Xf

P. CONCLUSIONS OF THE CHAPTER
In this chapter the notations and basic definitions that are going to be mostly

encountered by the reader presented. The orthodox functions and their known properties

are addressed in the following chapter, Chapter III.

28

III. ORTHODOX FUNCTIONS

This chapter focuses on a special type of function called an orthodox function.

Orthodox functions are important because, if the subfunctions of an AND bi-

decomposable function f are orthodox functions, then a circuit for f can be designed by

using a divide-and-conquer algorithm that dramatically reduces the design cost.

Before introducing orthodox functions we discuss the Disjoint Computation

Scheme Hypothesis, or DCSH proposed by Voight and Wegner [5].

A. DISJOINT COMPUTATION SCHEME HYPOTHESIS (DCSH)
The Direct conjunction or the AND of two functions, where the variable subsets

are disjoint from each other, can be defined as follows =∧),...,,,...,,)(2121 nn yyyxxxgf

)),...,,(21 nyyyg

(

and direct disjunction or the OR of two functions,

where the variables subsets are disjoint from each other, can be defined as follows;

)),...,,(),...,,((2121 nn yyygxxxf ∧

),...,,,,...,,)((2121 nn yyyxxxgf),...,,((21 nxxxf ∨=∨ .

One might expect that the minimal sum-of products expression of f ^g or f ∨g can

be obtained by finding the minimal sum-of-products expression f and g separately and

computing the conjunction or disjunction of them. The Disjoint Computation Scheme

Hypothesis states this. In applying it, we achieve a significant advantage since the

computation time for computing the MSOP of f and g is usually much less than for

computing the MSOP of f ^g or f ∨g.

Lemma; let p1 and p2 be implicants on X1 and X2, where 021 =∩ XX .Products p1

and p2 are PI’s of and respectively if and only if;)(11 Xh)(22 Xh

• p1 and p2 are PI’s of , and)()(2211 XhXh ∨

• p1 p2 is a PI of)()(2211 XhXh

Following is the proof of the above statement. If p is a PI of either h1 or h2, it is trivially

an implicant of . Since21 hh ∨ 021 =∩ XX , p is also a PI of . Let p be a PI 21 hh ∨

29

of . It can be expressed as21 hh ∨ 21 ppp = , where p1 consists of literals from X1 only and

p2 consists of literals from X2 only. Since p is a PI of , an assignment of values to

the variables associated with causes either h

21 hh ∨

)(22 Xh

2p

21 pp

)(11 Xh ∨

1p

()

1 or h2 or both to be 1. Assume h1 is 1.

Since h1 is 1, p1 is an implicant of h1. But, can’t be a PI unless . p21 pp

(2 Xh

1h

12 =p

2p

1 must be a

PI of h1. On the contrary, if not, it implies a PI, of h'
1p

)

)1X

1. Thus must be a product

that implies , that is implied by . But this is a contradiction, since is a PI,

it must be that p

'
1p

21 hh ∨

)(22 Xh

21 pp

(1 Xh

1 is a PI of h1 [1].

)(22 X

)(11 X

() (gMSOP :f:MSOPg τττ +=

() () ()g:MSOPf:MSOPg τττ =

gf ∨

gf ∧:MSOPτ () () ()gf:MSOPgf:MSOP :ττ≤∧

(∨∨ ...∨ ff: 1MSOPτ

()) ()nf:MSOP...f1MSOP ττ +++

(Xf)(Yg ∩X

() ()gMSOPf:MSOPf: ττ +∨ (f

,(a 1)(=bg

From the above lemma, it can be stated that the OR of MSOPs for and

is an SOP that represents . Similarly, the AND of MSOPs for

and is an SOP that represents . The Disjoint Computation

Scheme Hypothesis also states same ideas, and they can be expressed as follows;

)1

h

h

2

(

•)fMSOP : ∨ , and

• fMSOP : ∧ [1].

DCSH holds in every case of , but a similar statement is not true for gf ∧ .

This is a surprising result and leads us a new expression for the DCSH specifically

for () . It is MSOPτ .

1. DCSH for f ∨ g

Use the abbreviation DCSH (∨) for direct disjunction. As was mentioned earlier,

DCSH (∨), holds in every case. Specifically) =nf2

(fMSOP :: 2τ and no fi is a constant 1. This is not a

surprising result and can be easily proved as follows.

Let and be two functions, where) 0=Y .

Then ()gMSOP :τ= . Consider an input a, that 0) =a

then each input , where)b is covered only by the prime implicants from

30

function g. Thus, it is needed ()gMSOP :τ PIs from function g and ()fMSOP :τ PIs

from function f.

)(Xf 212) xx +=

)(af

Consider functions and , where)(Yg 1 ,(xxf and

2121),(yyyyg = , the result for the direct disjunction of these two functions

is 212) yy∨1(xxgf +=∨ and number of the PI in the MSOP representation of this new

function is three according to DCSH (∨). The Karnaugh maps in the Figure 14 show this

function.

 0

 1

 x2

x1

0 1

 1 1

 1 0

 1

 y2

y1

0 1

 1

(a) (b)

y1 y2

x1 x2

00

01

11

10

00 01 11 10

 1 1 1

 1

 1 1

 1

 1

 1

 1 1

 1 1

 (c)
Figure 14. (a) Karnaugh Map for function f (b) Karnaugh Map for function g (c) Karnaugh

Map for the new obtained function.

31

Choose the input a as 10, where 0= , and b as 11, where . As can be

seen from Figure 14 (c), inputs (for the new function yields 1 in the Karnaugh map

representation, and this 1 comes from function g, which means that it can be covered only

1)(=bg

),ba

by a prime implicant that belongs to function g. If we pick a as 00, where , and b

as 00, where , from Figure 14 (c) the input for the new function is a 1 and

this time it comes from the function f. Thus, it can be covered by a prime implicant that

belongs to function f. Prime implicants that are marked by a thin line come from f and

prime implicant that is marked dashed and thick line comes from g so that the total

number of prime implicants of newly obtained function is three for its MSOP, which

matches the result of the DCSH (∨).

1)(=af

0)(=bg

()

),(ba

g τ=∧

f

2. DCSH for f ^ g

To represent the AND DCSH, we use the abbreviation DCSH (^). Unlike

DCSH (∨), DCSH (^) does not hold in every case. Voight and Wegner [5] have proved

this in 1989 by using a 5-variable function and in February 2001 Sasao and Butler [1]

reproved it by using a 4-variable function. Also, they proved that this was the simplest

counterexample to DCSH (^). Although the functions appear to be different, in reality the

functions they had used were related with each other. The one that has been used by

Wegner and Voight was an extended version of the one that has been used by Sasao and

Butler, and this extension has been obtained by ANDing the function with one more

variable. Later, it is going to be proved that these functions are related each other.

As mentioned earlier, in this chapter, the important result for us is the failure of

this hypothesis rather than its success. This failure leads us to a new class of functions

called orthodox functions.

As it is explained earlier DCSH (^) expresses that;

() ()gMSOPfMSOPfMSOP ::: ττ , where the literals of f and g are disjoint

from each other. Although it seems reasonable to obtain the MSOP for by

simplifying f and g separately and forming a MSOP for function

g∧

gf ∧ by applying the

law of distributivity, the result of the computation does not give us the exact MSOP for

in all cases. gf ∧

To prove this, use Sasao and Butler’s [1] counterexample, since it is the simplest

counterexample. As shown in Figure 15, this counterexample is a 4-variable function

32

with 6 PIs (one of which, yw, is not shown). Three of the six are essential PIs (denoted

with dashed and thick lines) and the rest are non-essential PIs (denoted thin and solid

lines). To be able to cover all the minterms of the function f, we need all the essential PIs

and 2 of the non-essential PIs therefore, () 5: =fMSOPτ . If we consider these 5

PIs, we can represent the function f as follows;

)() 41423 xxxx ++(),,,(213213214321 xxxxxxxxxxxxxf ++= . The first pair of

parenthesis encloses the essential PIs and the second encloses 2 of the 3 non-essential

PIs.

Now, consider the function , where =f (X) f (Y). Function is an 8-

variable function that is obtained by simply ANDing two copies of the function using two

different sets of variables for multiplier. Since

2f 2f 2f

),,,()(4321 xxxxfXf = has 5 PIs,

DCSH (^) suggests there are 25 PIs for the MSOP of function . 2f

Figure 15. 4-variable counterexample.

z w

x y

00

01

11

10

00 01 11 10

 1

 1

 1

 1

 1 1

 1

 1

 1

 1

A sum of product expression can be obtained by applying distributivity, as

follows

),,,(),,,()()(43214321
2 yyyyfxxxxfYfXff ==

 ,A= [1]),(),()(YXCYXBYX ∨∨

33

where, A(X,Y) is the product of the PIs that are essential in both function f (X) and f (Y),

B(X, Y) is the product of one essential and one non-essential PI, C(X, Y) is the product of

PIs that are non-essential in both functions.

321321321321321321321321

321321321321321321321321321321),(

yyyxxxyyyxxxyyyxxxyyyxxx

yyyxxxyyyxxxyyyxxxyyyxxxyyyxxxYXA

∨∨∨∨

∨∨∨∨=

321413214132141321423214232142

13214232141321423214132142321),(

yyyxxyyyxxyyyxxyyyxxyyyxxyyyxx

yxxxyyxxxyyxxxyyxxxyyxxxyyxxxYXB

∨∨∨∨∨∨

∨∨∨∨∨=

4141424141424242),(yyxxyyxxyyxxyyxxYX ∨∨∨=

4y

 C [1].

 It is obvious that, A (X, Y) ∨ B (X, Y) ∨ C (X, Y) gives a total of 25 PIs as expected.

However, can be represented using only 24 PIs instead of 25, where C (X,Y) is

replaced by and A (X, Y), B (X, Y) remain same. This

new SOP for can be verified to be an MSOP by Espresso. This is a counterexample to

DHCP. It shows that decomposing a function into subfunctions on disjoint sets of

variables (AND disjoint bi-decomposition), minimizing the two SOP’s separately and

applying the law of distributivity does not always yield an MSOP.

2f

3x

f

41414242434 yyxxyyxxyyx ∨∨

2

This counterexample’s result leads us a new class of functions, which always

yields the MSOP when we apply DHCP (^), called orthodox functions. Recent researches

that done by Sasao and Butler [1] show all symmetric functions, functions with three or

fewer variables, all unate functions, many benchmark functions and few random

functions are included in this new class.

A function is an orthodox function, if and only if the number of PIs in the

MSOP representation of the function is equal to the number of minterms in its

maximal independent set. Algebraically this can be expressed as;

)(Xf

)(Xf

() (ffMSOP)ητ =: .

B. SAMPLE ORTHODOX FUNCTIONS

Now, different classes of orthodox functions are demonstrated.

• The orthodox function f, where 133221321),,(xxxxxxxxxf ∨∨= belongs

to the three or fewer variables subclass. This function is orthodox,

34

since () () 3: == ffMSOP ητ . In Figure 16, the minterms that belong to

the maximum independent set of minterms are marked by , and circled

minterms are the PIs of the MSOP. Also, for this example, it is interesting

that there is another maximum independent set of minterms and another

MSOP.

(): =fMSOPτ

 1

x y

 z

00

01

00 01 11 10

 1 1

 1 1

Figure 16. An orthodox function that belongs to the three or fewer variables subclass.

• The next orthodox function f, where

belongs to the unate functions subclass. This function is an orthodox

function, since

43214321),,,(xxxxxxxxf ∨=

() 2=fη . In Figure 17 the minterms marked

by are the ones that belong to the maximum independent set of

minterms, and circled minterms are the PIs that belong to the MSOP.

z w

x y

00

01

11

10

00 01 11 10

 1

 1

 1 1

 1

 1

 1

Figure 17. An orthodox function that belongs to the unate function subclass.

35

• Third and the last example orthodox function f, where

432143214321

432143214321432143214321),,,(

xxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxf

++

++++=

belongs to the symmetric functions subclass. This function is an orthodox

function, since () () 8: == ffMSOP ητ . In Figure 18 the minterms

marked by are the ones that belong to the maximum independent set of

minterms, and circled minterms are the PIs that belong to the MSOP.

Figure 18. An orthodox function that belongs to symmetric function subclass.

z w

x y

00

01

11

10

00 01 11 10

 1 1

 1

 1

 1

 1

 1

 1

C. THEOREMS AND OBSERVATIONS

Orthodox functions are new concept. Therefore, there are not so many theorems

related with this type of function. The known theorems are the ones that had been derived

by Sasao and Butler [1], and these theorems focus more on the determination of the

orthodox functions than on their specific properties.

In the following paragraphs, the known theorems of the orthodox functions will

be discussed and, in the experimental results chapter, new observations and conjectures

related with this new class of functions will introduced.

36

1. Theorem 1

Let functions f (X) and g (Y) be orthodox functions. If variable subsets X and Y

are disjoint, then the function f (X) g (Y), is also an orthodox function [1].

Consider the function f, where 212121),(xxxxxxf += and function g,

where . The function z, which is obtained by the logical AND of functions f

and g, can be represented as

121),(yyyg =

121121 yxxyxx +2121),,,(yyxxz =

()
 and this function also is an

orthodox function, since (): 2== ffMSOP ητ . Figure 19 shows the Karnaugh map

representations of the functions.

2. Theorem 2

Let functions f (X) and g (X) be NP-equivalent. f is an orthodox function if and

only if g is orthodox [1].

The proof of this theorem is straightforward. Since the NP-equivalent functions

are obtained from the same subset of variables’ permutation and complementation, we

can easily declare that the MSOP of can be formed from , by a suitable

complementation and permutation of variables that belong to function . The

converse of the case is also true. Therefore, if has α independent minterms, so

does function . Similarly the MSOP of the f and g have the same number of PI’s.

)(Xf)(Xg

)(Xg

)(Xg

)(Xf

Consider the functions f and g, where 21)(xxXf += , 21)(xxXg += . Function g

is obtained by permutation of the variables of function f. Since both representations are

the MSOP representations of the functions, we do not need any further simplifications.

Now, if we consider the function f, we can observe, it has 2 independent minterms. So

does function g from the previous paragraph’s discussion; they both have 2 PIs in their

MSOP representation, and so () () () () 2: =: === fgMSOPffMSOP ητητ .

37

(a) (b)

 0

 1

 x2

x1

0 1

 1

 1 0

 1

y1

0 1

 1

 1

z w

x y

00

01

11

10

00 01 11 10

 1 1

 1

 1

 (c)
Figure 19. Karnaugh map representations.

3. Theorem 3

If f’s MSOP representation consists of only essential PIs then f is an orthodox

function [1].

To prove this theorem, it is sufficient to consider distinguished minterms. This

concept suggests that, each essential PI covers a minterm that is covered by only that PI,

which means that in the maximum independent set of minterms, we will have at least the

number of essential PIs many independent minterms so if we have only essential PIs for a

function this function is an orthodox function since, () ()ffMSOP ητ =: .

38

Consider f, where function 3213213214321),,,(xxxxxxxxxxxxxf ++= . This

function consists of only essential PIs, as can be seen from its Karnaugh map

representation in Figure 20. So, each essential PI covers a distinguished minterm, and we

have 3 distinguished minterms and 3 essential PIs, which perfectly matches the definition

of orthodox functions.

Figure 20. Karnaugh map representation of function f (the minterms that denoted by “ ” are
the distinguished minterms).

z w

x y

00

01

11

10

00 01 11 10

 1

 1

 1

 1

 1

 1

D. CONCLUSIONS OF THE CHAPTER

Orthodox functions, their known properties, and disjoint computation scheme

hypothesis for logical AND and OR operations addressed in this chapter. After the

introduction of the orthodox functions three example orthodox functions were

demonstrated in this chapter also. The non-orthodox function concept addressed in

Chapter IV of this thesis, same chapter also proposes an algorithm, Algorithm 3, to create

non-orthodox functions.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

IV. NON-ORTHODOX FUNCTIONS

It has been shown experimentally that the fraction of n-variable functions that are

orthodox approaches 0 as n approaches infinity [1]. Figure 21 depicts the orthodox and

non-orthodox functions as disjoint subsets of all functions.

Non-orthodox functions:
-remaining functions

Orthodox functions:
-all symmetric functions
-unate functions
-many benchmarkfunctions
-all functions with 3 or fewer
variables
-few random functions

All functions

Figure 21. Set of the all functions divided among orthodox and non-orthodox functions.

People may think that the number of orthodox functions is greater than the

number of non-orthodox functions because, among the functions that people can

manipulate without help of computer, the number of the functions that are orthodox is

greater than the number that are non-orthodox. This is true of 4-variable functions, 5-

variable functions and 6-variable functions; the percentage of the non-orthodox functions

is small in these types of functions. Table 5 can give us a quick idea about the percentage

of the non-orthodox functions that have 4 to 10-variables [1].
41

Number of Variables Percentage of Non-
orthodox functions

(%)
4 0.4
5 1
6 4
7 13
8 34
9 81
10 100

Table 5. Percentage of the Non-orthodox functions within 4 to 10-variable functions

After this introduction, non-orthodox functions discussion may proceed with the

research results of Sasao and Butler [1].

A. FOUR-VARIABLE NON-ORTHODOX FUNCTIONS
There are 65536 functions of 4-variables, 216, which can be divided into 402 NP-

equivalent sets. It has been verified that only 4 NP-equivalence sets are non-orthodox. A

representative from each NP- equivalence class can be obtained by substituting 1s and 0s

for the don’t cares in Figure 22. Each representative function is NP-equivalent to 63 other

functions. As a result, we have totally 64*4 = 256 non-orthodox functions in 4-variable

functions, which gives us the percentage of 0.4% shown in Table 5[1].

z w

x y

00

01

11

10

00 01 11 10

 - 1

 1

 1

 1

 1 1

 1

 1

 1

 1 -

Figure 22. Four variables non-orthodox functions.

42

1. Properties of the 4-Variable Non-orthodox Functions

As explained earlier, there are 4 NP-equivalent classes among the 4-variable

functions and representatives of each class can be obtained by substituting 1s and 0s in

the don’t cares in the Figure 22.

Therefore, one class representative has two zeros in minterms

and 1110 and can be denoted as . Another class representative has

a 1 in minterm , a 0 in minterm

00004321 =xxxx

1x

00NP

210000432 =xxx 111043 =xx

21xx

xx

10NP

 and can be denoted

as . Still another class representative has a 0 in minterm , a 1 in

minterm and can be denoted as . The last class representative has

two 1s in minterms and 1110 and can be denoted as .

01NP

321 xxxx

000043 =xx

11NP

11104 =

4321 =xxxx 0000

It has been verified by Sasao and Butler [1] that when 4-variable non-orthodox

functions are squared by using disjoint variable sets they provide less PIs in the MSOP of

resultant function then expected. So 4-variable non-orthodox functions have the property

that . () ()22 :: fMSOPfMSOP ττ <

The experiments with the NP-equivalence sets , , and have

verified that when the members of these classes logically ANDed with each other by

using disjoint variable sets the resultant functions yield less PIs than expected from the

DCSH (∧). So, it can be stated that 4-variable non-orthodox functions also

have the property that

00NP 01NP 10NP 11NP

() () ()gffMSOP :: MSOPMSOP :g τττ <∧ ,

where and the difference is always 1. { 11100100 ,,,, NPNPNPNPgf ∈ }

B. CREATING A NON-ORTHODOX FUNCTION
Of the five variables functions, it is estimated that 1% of the total are non-

orthodox. The only known 5-variable non-orthodox function is the one proposed by

Voight and Wegner [5] (and the others that can be derived from it by a permutation and

complementation of the variables of the proposed one). This function is closely related to

the known examples of the 4-variable non-orthodox functions. This is going to be

demonstrated later in this thesis.

43

But, it is known from experiments that non-orthodox functions represent the vast

majority of functions with nine or more variables. Thus, there is a gap in our

understanding of these functions. It is the goal of this section to fill this gap.

Below is a procedure by which one can create a non-orthodox function with

desired number of variables. To understand this procedure, consider the following.

Consider the 4-variable non-orthodox functions representative, Figure 23 is going

to be its Karnaugh map representation. It can be observed that the non-essential PIs of the

function f give the non-orthodox property to the function. To understand how this

happens, consider the following.

1. Discussion for Non-orthodox Functions
It is explained that the non-orthodox function property is achieved by the help of

the non-essential PIs. Consider the definition of the non-orthodox function, the only

requirement is, a difference between the number of the prime implicants of the sum of

products representation of the function and the number of the elements of the maximal

independent minterm set. Also, if one considers the definitions of the non-essential prime

implicants and independent minterms set, it is obvious that the required difference can

only be obtained from the non-essential prime implicants since every essential prime

implicant has a minterm that is counted in ()fη .

In the case of non-essential prime implicants, each minterm of the prime

implicant can be covered by more than one non-essential or essential prime implicant. So,

under certain conditions, it is impossible to find an independent minterm from these

prime implicants, e.g. in Figure 23, there are 3 non-essential PIs in the Karnaugh map

representation of the function, and only 1 minterm among these 3 PIs’ minterms is

counted in ()fη .

Let’s continue the examination of the 4-variable non-orthodox function’s

Karnaugh map representation. Consider the non-essential prime implicants. If the

minterms associated with them are isolated from the whole function, the Karnaugh map

44

shown in Figure 24 is going to be obtained, which shows the middle two rows of the

Karnaugh map in Figure 23.

x3 x4

x1 x2

00

01

11

10

00 01 11 10

 1

 1

 1

 1

 1 1

 1

 1

 1

 1

Figure 23. 4-variable non-orthodox function. Dashed lines show the non-essential PIs, solid
lines show essential PIs.

x1 x2

 x3

00

01

00 01 11 10

 1 1 1 1

 1 1 1

Figure 24. Middle two rows of Figure 21.

Therefore, eliminating the minterms in Figure 23 that are covered by only

essential PIs, yields the minterms in Figure 24. The minterms in Figure 24 marked with

“ “ form a majority function and the non-essential PIs that are created by the minterms of

this majority function determine the difference between the number of the PIs in the

MSOP of f, (fMSOP :)τ and the number of the minterms in the maximal independent

minterms set of f, ()fη , depending on the number of the PIs that needed in the MSOP of f

to cover all the minterms. Also, note that isolating the minterms that are associated only

with essential PIs of the 4-variable non-orthodox function yields a new function with 3-

45

variables, where this 3-variable function includes the majority function that is formed by

the marked minterms of the Figure 24.

2. Steps of the Algorithm 3
After this discussion, one can consider that there is a common point in the Non-

Orthodox function’s Karnaugh Map representation, and it can be used to produce new

Non-Orthodox functions with more variables. Consider a method for producing non-

Orthodox functions by using this idea:

Algorithm 3:

1. Determining the number of variables of the non-orthodox function,

n, that is going to be constructed, where n is even.

Subtract 1 from n, to determine the number of variables of the function

that holds the majority function as explained in the previous section.

2. Determine the weak minterms of the function (function that we

determine the number of the variables in the previous step), to find the minterms of the

essential PIs of the newly generated non-orthodox function. These are minterms that are

covered by at least one essential and at least one non-essential PI. For example, consider

Figures 23 and 24, eliminating the minterms that are covered only by essential PIs

accomplished the subtracting 1 from the variable number of the non-orthodox function

step. Thus, we obtained the function that holds the majority function (discussed in the

previous part). So that, the minterms that unmarked in Figure 24 are the weak minterms.

a. To create minterms that belong to the essential PIs of the

non-orthodox function that wanted to be constructed, append a dash to the end of each

weak minterm. Then, expand it by substituting 0 and 1 for dash; i.e. is a

weak minterm in Figure 24, appending a dash yields 001-, expanding it yields 0010 and

0011, 4-variable minterms of the function f shown in Figure 23.

001321 =xxx

 3. Finally, to obtain the minterms that are covered by the non-

essential PIs of the non-orthodox function that wanted to be constructed, the strong

minterms should be determined. And, opposite of the weak minterms appending a 1 at the

46

end of these minterms is sufficient to expand them. For example, consider the minterm

110 in Figure 24. It is a strong minterm, adding a 1 to the end of it yields 1101. This

minterm is covered by one of the non-essential PI of non-orthodox function, as shown in

Figure 23.

Consider how Algorithm 3 can be used to create a 6-variable non-orthodox

function.

• Subtract 1 from the number of variables in the non-orthodox function to

determine the number of the variables of the function that is going to hold

the majority function.

To obtain the minterms covered by the essential PIs of the non-orthodox function,

that is wanted to be constructed by using this algorithm;

• Determine the weak minterms of the 5-variable function, in running

example, a 5-variable function is considered, so no weak minterm can

have more than 2 1s in it. Table 6 is a suitable way to represent the weak

minterms.

• In Table 6, each row corresponds to a set of weak minterms. For example,

consider the first row of Table 6. Substitute 1s and 0s for dashes such that

there are no more than 2 1s. This yields the weak minterms 10000, 11000,

10100, 10010 and 10001.

x1 x2 x3 x4 x5

1 - - - -

0 1 - - -

0 0 1 - -

0 0 0 1 -

0 0 0 0 1

Table 6. The weak minterms.

47

• Next, append dashes to each weak minterm and expand it. For example,

consider the weak minterms that obtained in previous step, adding dashes

to the end of their cube notations and substituting 1s and 0s for these

dashes yields following 6-variable minterms; 100000-100001, 110000-

110001, 101000-101001, 100100-100101, 100010-100011. To find all the

minterms that covered by the essential PIs of the 6-variable non-orthodox

function that wanted to be created, apply the same steps that were applied

to each row of Table 6. Table 8 shows all the minterms that covered by

essential PIs of the 6-varable non-orthodox function.

To obtain the minterms that are covered by the non-essential PIs of the non-

orthodox function that wanted to be generated;

• Determine the strong minterms of the 5-variable function. Table 7 shows

the strong minterms of the 5-variable function.

• On the contrary to weak minterms, append only 1 to the cube notations of

the strong minterms. This yields the 6-variable minterms that covered by

the non-essential PIs of the non-orthodox function we want to generate.

The first 5 columns of the Table 8 show the 5-variable strong minterms,

Table 8 shows the the minterms that covered by non-essential PIs of the

non-orthodox function.

48

x1 x2 x3 x4 x5 x6

0 1 0 1 1 1

0 1 1 1 0 1

0 1 1 1 1 1

0 0 1 1 1 1

0 1 1 0 1 1

1 1 0 0 1 1

1 1 1 0 0 1

1 1 0 1 0 1

1 1 0 1 1 1

1 1 1 1 0 1

1 1 1 1 1 1

1 1 1 0 1 1

1 0 0 1 1 1

1 0 1 1 1 1

1 0 1 1 0 1

1 0 1 0 1 1

Table 7. The strong minterms.

After applying the above discussion to the weak minterms of the 5-variable

function, the minterms shown in Table 8 were obtained as the minterms of the essential

PIs of the 6-variable non-orthodox function.

49

of the row of
Table 6 x1 x2 x3 x4 x5 x6

From row 1 1 0 0 0 0 0/1
From row 1 1 1 0 0 0 0/1
From row 1 1 0 1 0 0 0/1
From row 1 1 0 0 1 0 0/1
From row 1 1 0 0 0 1 0/1
From row 2 0 1 0 0 0 0/1
From row 2 0 1 1 0 0 0/1
From row 2 0 1 0 1 0 0/1
From row 2 0 1 0 0 1 0/1
From row 3 0 0 1 0 0 0/1
From row 3 0 0 1 1 0 0/1
From row 3 0 0 1 0 1 0/1
From row 4 0 0 0 1 0 0/1
From row 4 0 0 0 1 1 0/1
From row 5 0 0 0 0 1 0/1

Table 8. All the minterms that belong to the essential PIs of the 6-variable non-orthodox
function that is generated by Algorithm 1.

As it is seen from Tables 7 and 8 there are a total of 46 minterms of the non-

orthodox function.

3. Verifying the Non-orthodox Function Property
After specifying all minterms of the function, it is necessary to determine whether

the created function has the non-orthodox property or not. To make this decision, it is

needed to be known the number of the PIs in generated function’s minimum sum of

products representation and number of the minterms in its maximum independent set of

minterms. Place all the minterms that we determined into a Karnaugh map to be able to

find the number of the minterms in the independent minterms set, ()fη and ()fMSOP :τ .

Figure 25 shows the Karnaugh map representation of function produced by

Algorithm 3. Minimizing this function yields a total 13 PIs; 10 essential and 3 non-

essential. Espresso was used for the minimization. During the minimization –Dexact flag

was used to obtain an exact expression for MSOP. Therefore () 13: =fMSOPτ .

50

 To determine the independent minterms, consider the essential PIs and the non-

essential PIs. For each essential PI, there is 1 independent minterm, and overall essential

PIs is 10. If we consider the non-essential PIs, there is only 1 independent minterm.

Overall, there are 11 independent minterms and so () 11=fη . This is shown by a “x” in

Figure 25, and all the independent minterms that come from essential PIs are marked also

by “ ”.

Since () ffMSOP ()ητ ≠: , it can be stated that the function derived from the

Algorithm 3 is a non-orthodox function.

C. CONCLUSIONS OF THE CHAPTER
In this chapter of this thesis, the non-orthodox function concept was introduced to

the reader. To do this the known simplest non-orthodox functions, 4-variable non-

orthodox functions were used. Also, an algorithm, Algorithm 3, was proposed in this

chapter. This algorithm constructs non-orthodox functions with 2n-variables, where n is

even. In the “Creating a non-orthodox function” part of the thesis, Algorithm 3 is

completely discussed and correctness of the results of this algorithm is also verified by

evaluating the function that is created by Algorithm 3 in respect to official non-orthodox

function definition. Chapter V, the following chapter, is the part of this thesis that

presents the results of the experinmental research done with non-orthodox and orthodox

functions.

51

 1

x6 = 0

x5

0

1

x3 x4

x1 x2

00

01

11

10

00 01 11 10

 1
1

 1
1

 1
1

 1
1

1
 1
1x

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1

x6 = 0

x5

0

1

x3 x4

x1 x2

00

01

11

10

00 01 11 10

1

1

 1
1

1

1

1

 1
1

 1
1

1

 1
1

 1

Figure 25. 6-variable non-orthodox function.

52

V. EXPERIMENTAL RESULTS

Experiments were conducted using Espresso and 6 java programs. The goal of

these experiments is to increase our knowledge of orthodox and non-orthodox functions.

Because it is a basic tool of experiments, Espresso has been discussed in detail in

the introduction. In the following sections, brief explanations of the other software, all of

which are java programs, are given. These are mostly used to create input files for

Espresso (except the YaratNon.java). YaratNon.java, on the other hand, is used to create

the representative function of the non-orthodox functions with a given number of

variables. It uses the algorithm discussed in Chapter 3.

A. YARATNON.JAVA
This program is used to obtain the representatives of families of non-orthodox

functions with the given number of variables. The number of variables must be even

number due to the algorithm of the program. This program has two inputs; the name of

the output file, which has the extension “.es”, and number of the variables of the majority

function, which is an odd number. This program implements the Algorithm 1.

The java source code of the YaratNon.java is shown in Appendix A.

B. FAMILY.JAVA

This program creates a family of functions from one representative function

produced by YaratNon.java. It determines the minterms that can be treated as don’t cares.

To accomplish this task, the program obtains the minterms from the user that are

potentially don’t cares. Then, it creates new functions by inserting the potential don’t

cares into the original non-orthodox function. Each newly created function is written to a

new file that has an extension “.es”. Family.java uses the On-set representation while

writing the functions into different files, because these files are used as input files for

Espresso and Espresso uses the On-set representation as default.

53

 Inputs to the program include; the name of the original non-orthodox function’s

file, the file created by YaratNon.java, each potential don’t care minterm that the user

wants to investigate and the output file name containing the newly created functions.

For example, if you have a representative function for 6-variable non-orthodox

functions, and you want to specify 2 minterms as don’t cares, Family.java will provide

you 4 new functions in 4 different files. Each file has the same name with a different

number appended; i.e let the name of the output file entered be “experience.es”. Then

“experience0.es” will be given to the first function, “experience1.es” the second, up to 3.

The java source code of the Family.java is shown in Appendix B.

C. SONKARAR.JAVA
Family.java’s task is to create a number of input files for Espresso, depending on

the number of minterms specified as don’t cares. Espresso creates an output file with an

extension “.out” for each function that has been minimized by it and SonKarar.java’s task

is to read each of these output files and determine whether the function is an orthodox

function or non-orthodox function. To make this decision, SonKarar.java uses simple

logic, described as follows.

• SonKarar.java goes thorough the Espresso output file of each function,

and checks the PIs. SonKarar.java controls the cube notations of each PI ,

increments its counter whenever it encounters a PI that has a 1 at the very

last literal of its cube notation. After SonKarar.java done either one of the

two cases holds:

• Case 1: Function’s MSOP may include more that 1 PI such that their cube

notations have a 1 for the last literal, then the function that is under test is

a non-orthodox function.

• Case 2: Function’s MSOP may include exactly 1 PI such that its cube

notation has a 1 for the last literal, then the function under test is an

orthodox function.

54

Although it looks like a simple logic, the algorithm discussed above should be

proved since, decisions taken by SonKarar.java directly affects the experimental results

of this chapter. Following is the proof of the above algorithm;

It is known from Chapter III that Algorithm 3 is used to create the basic n-

variable non-orthodox function, where n is even. Let the function created by Algorithm 3

be f, where f can be written as follows;

() nnnn xxxxxSf 1211
2

,...,2,1
... −

−
∨∨∨∨








= .

Let MI be a maximal independent set of f1. Among the minterms in the

subfunction f1 of f, where f1 is;

(1,,...,, 121
22

,...,2
2

,1
2

1 −
+++

= nnnnn xxxSf), where n is the number of the variables of f.

MI may only have 1 minterm.

f1 consists of minterms that all belong to the non-essential PIs of function f. These

minterms can be covered by 5 non-essential PIs as shown in Figure 25. Table 9 shows the

cube notations of these non-essential PIs, and also observe from the same table that all

PIs of function f1 has a 1 in their last literal of cube notations.

1x 2x 3x 4x 5x 6x

1 - - - - 1

- 1 - - - 1

- - 1 - - 1

- - - 1 - 1

- - - - 1 1

Table 9. Cube notations of the non-essential PIs of f.

55

Choose two independent minterms among these 5 PIs, e.g. 001111 and 110101.

From Table 9, it can be observed that the chosen minterms are both covered by 4th non-

essential PI. If the minterms belong to f1 are checked, it can be seen that there is no

minterm that is covered by only 1 PI. Thus, no more than 1 minterm can be picked as an

independent minterm among these 16 minterms.

It follows that, if the function under test has more than 1 PI that has a 1 at the last

literal of its cube notation, then the number of the minterms in its independent minterms

set is less than the number of the PIs in its MSOP. Thus, this function is a non-orthodox

function.

Also, the same computer program can be used to determine the types of functions

created by Family.java because, Family.java creates functions by substituting 1s and 0s to

the minterms provided by the user. The user cannot pick minterms from the right

Karnaugh map of Figure 25, since there is only one minterm that is not assigned a 1 in

this Karnaugh map, and to assign a 1 to this minterm causes to f1 to be 1. And, this makes

the n-variable function f a (n-1)-variable function that consists of only essential PIs. As

mentioned in Chapter III, this type of functions is always orthodox.

Thus, in the usage of Family.java, the user has to provide minterm/minterms to

the program from the left Karnaugh map in Figure 25. It shows the essential PIs of the

function f, and the insertion of new minterms in this Karnaugh map will not affect the PIs

(circles) of left Karnaugh map in Figure 25. That is, during the minimization of the

functions, the biggest circles should be picked to cover the minterms to be able to remove

as many literals as possible from the PIs of the MSOPs, and the biggest 5 circles (PIs) are

listed in Table 9. No matter how many uncovered minterms remained in the right

Karnaugh map of Figure 25, at least one of these circles we should be picked. It follows

that the same idea used in YaratNon.java can be used, to determine the types of the

functions that are created by Family.java.

The java source code of the SonKarar.java is shown in Appendix C.

56

D. CARPIMTABLOSU.JAVA

This program’s task is to square a given non-orthodox function. To perform the

square operation, Carpimtablosu.java logically ANDs 2 copies of the given function by

using 2 disjoint variable sets for each copy. It gets the file name of the original function

that we wish to square and an output file name for the squared functions from the user.

(CarpimTablosu.java uses the given names as bases and appends a counter to these bases

to point the proper function.)

Let the base name for the total 16 non-orthodox functions be “birol”, and let the

base name for the squared version of these functions be “filiz”. Then, the program reads

the files birol0.es, birol1.es and so forth up to birol15.es, squares each of the read file and

names them filiz0.es, filiz1.es respectively.

The java source code of the CarpimTablosu.java is shown in Appendix D.

E. COMPARE.JAVA

Compare.java attempts to answer the question “Are there any AND bi-

decomposable functions in which the application of the law of distributivity to the MSOPs

of component functions produces an SOP with many more PIs than in the MSOP?” [1].

To do this, Compare.java goes through Espresso’s output files and gets the

number of the PIs in the MSOPs of the functions that are created by CarpimTablosu.java

and Family.java. Compare.java squares the PIs that belong to the MSOP of the functions

created by Family.java, to obtain the number of the PIs in the MSOP of when the law

of distributivity is applied. Then, Compare.java subtracts the resultant number from the

PIs number taken from the Espresso output files for the functions created by

CarpimTablosu.java. Compare.java writes the results of the subtractions to an output file.

2f

The java source code of the Compare.java is in Appendix E.

F. ESPRESSO2.JAVA
Espresso2.java is used to compute the resultant function of the logical ANDing

operation between 2 any n-variable function.

57

Espresso2.java gets the input functions as On-sets from the user and also provides

the resultant function with On-set representation. Results of this program can used as

input files for Espresso. Espresso2.java also gets the name of the output file to write the

resultant function.

The java source code of the Espresso2.java is shown in Appendix F.

G. USAGE OF THE JAVA PROGRAMS AND ESPRESSO IN
EXPERIMENTS

To conduct experiments with orthodox/non-orthodox functions, programs

explained above must be used in a special order, because of the fact that the result files of

a program are going to be the input files of another program.

Figure 26 and 27 depicts the usages of the programs for different kinds of

experiments. To be able to determine the representatives of the non-orthodox functions’

NP-equivalence sets, the programs must be used in the order that is depicted by Figure

26. Following is a brief explanation of the figure;

• Create the base n-variable non-orthodox function using YaratNon.java.

• The output file of the YaratNon.java becomes the input of the Family.java.

Family.java substitutes 1s and 0s for the minterms that are provided by

user. Then, it inserts the newly created minterms to the minterms set of the

n-variable base non-orthodox function to create new functions.

• Espresso minimizes all the functions that are created by Family.java.

Espresso writes the results into different output files for each function.

• Output files of Espresso become the input files for SonKarar.java.

SonKarar.java goes thorough the output files to determine whether there is

an orthodox function in the functions that are created by Family.java or

not. If there is no orthodox function, then the provided set of minterms can

be treated as don’t cares. Otherwise, the last provided minterm are

excluded from the set.

58

• The user continues to provide the minterms until there is no minterm to be

checked.

Figure 27 depicts the usage of the programs to determine the penalty of

minimization a bi-decomposable function by applying law of distributivity and

minimizing without decomposing the function into subfunctions. Following is a brief

explanation of the flow chart that is depicted in the Figure 27.

• Result files (each one represents a function) of Family.java become the

inputs of the CarpimTablosu.java, when it is decided that they are non-

orthodox functions.

• CarpimTablosu.java squares each function and writes the results to

different files for each function. These files become the input files for

Espresso.

• Espresso minimizes all the squared functions.

• Compare.java finds the difference between ()2: fMSOPτ and

by using the output files of Espresso, as explained in part E. (2MSOPτ)

To be able to verify the correctness of the Java programs, they were used to

conduct experiments with all 4-variable non-orthodox functions and the results were

compared with the results generated by Sasao and Butler’s computer program [1]. This

comparison showed that Java programs that developed for the experimental research of

this thesis worked correctly. Then, exploration of 6-variable non-orthodox functions

started. During the experiments, 924,288 6-variable functions have been created. The

experiments were conducted over a period of 4 weeks. The analysis of the generated data

took 5 weeks.

59

-Include the last tried minterm to the
current set
-Go to Family.java
-Continue to follow the same pattern

??

If substituting 1and 0 for current
minterm created one or more
Orthodox function/functions

SonKarar.java
Goes through the PIs of the
output files of Espresso.
Determines the type of the
function

Output files of
Espresso
become input
files for

Espresso
Minimizes all created
functions

Result files of
Family.java become
inputs for Espresso

Family.java
Substitutes 1s and 0s for
provided minterms
creates all possible
functions with the current
set of minterms

Result file of
YaratNon.java
becomes the input for
Family.java

YaratNon.java
Creates the basic n-
variable non-orthodox
function

Figure 26. Usage of the java programs to determine th

60
If substituting 1and 0 for current
minterm did not create Orthodox
function/functions
-Exclude the current minterm
from the minterm set
-Go to Family.java
-Continue to follow same
pattern

e 6-variable non-orthodox functions.

minterms

()2: fMSOPτ
()fMSOP :τ

Compare.java
-Reads the Espresso’s output files
-Subtracts the from

-Writes the results to a file

Both result files
become input for
Compare.java

Result files for the
functions created by
CarpimTablosu.java

Result files for the
functions created by
Family.java

Espresso
Minimizes functions
created by both
Family.java
&CarpimTablosu.java

Result files of
CarpimTablosu.java
become inputs for
Espresso

Family.java
Substitutes 1s for 0s in
Base function creates all
possible functions with
the current set of

Result file of
Family.java becomes
the input for
CarpimTablosu.java
and also Espresso

Squares the resultant
functions of Family.java

CarpimTablosu.java

Figure 27. Usage of the java programs to determine the penalty between minimization with
law of distributivity and conventional minimization.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

H. OBSERVATIONS OBTAINED FROM EXPERIMENTS

The experimental analysis of the non-orthodox and orthodox functions by using

the above programs and Espresso produced the following results;

1. Lemma 1

Let X be a set of variables and let y be a variable such that Xy ∉ . Then is

a non-orthodox (orthodox) function if and only if is non-orthodox (orthodox).

)(Xyf

)(Xf

For example, consider the function f,

where 42433213213214321),,,(xxxxxxxxxxxxxxxxxf ++++=

() 5:

. The function f is

non-orthodox function since =fMSOPτ and () 4=fη as shown in Figure 29.

Logically ANDing function f with literal y, where { }4321 ,,, xxxxX = and , yields

resultant function

Xy ∉

yx42xyxxyxxxyxxxyxxxyXf 43321321321)(++++=

() 5)(:

. Figure 28

shows the Karnaugh map representation of the resultant function. It can be observed from

the Figure 28 =yXfMSOPτ and () 4)(=yXfη . The minterms marked with “ ”

in Figure 28 are the ones that belong to the maximum independent minterms set, and the

circled minterms represent the PIs of the resultant function.

To prove Lemma 1, following idea can be used. A PI, denoted as p, of function

has the property that)(Xf py

)

 is a PI of . Similarly, a PI of has the form

py, where p is a PI of . As a result, it is obvious that logically ANDing a function

with a literal that does not belong to its variable set, is nothing more than increasing the

number of variables of the original function by 1, and all the properties of the function,

like

yXf)(yXf)(

(Xf

()fMSOP :τ and (f)η remain unchanged.

63

y

0

1

x3 x4

x1 x2

00

01

11

10

00 01 11 10

 1

 1 1 1 1

 1 1 1

 1

 1

Figure 28. Karnaugh map representation of yXf)(.

2. Lemma 2

Let X be a set of variables and let y be a variable such that . Then

is a non-orthodox function if and only if is non-orthodox.

Xy ∉

)(Xfy ∨)(Xf

To demonstrate this lemma, Lemma 1’s example function has been used. Once

again, function f has the non-orthodox property since () 5: =fMSOPτ and () 4=fη .

Figure 29 depicts the original function ’s Karnaugh map. The minterms marked by

belong to the maximum independent minterms set, and the circled minterms show the PIs

that belong to MSOP of function f.

)(Xf

64

Figure 29. Karnaugh map representation of
42433213213214321),,,(xxxxxxxxxxxxxxxxxf ++++= .

x3 x4

x1 x2

00

01

11

10

00 01 11 10

 1

 1

 1

 1

 1 1

 1

 1

 1

 1

Logically ORing the function f with the literal y, where Xy ∉ , yields following

function, that is; yxxxxxxxxxxxyXf ++++=∨ 43321321321)(xx +42 , which can be

represented as we shown in Figure 30. Again, the minterms that are marked by “ “

belong to the maximum independent minterms set, and the circled minterms show the

MSOP of function f.

As it can be seen from Figure 30, () 6)(: =∨ yXfMSOPτ and () 5)(=∨ yXfη .

Thus, the resultant function is also a non-orthodox function.

To prove Lemma 2, the idea used in Lemma 1 has been used. A PI, denoted as p,

of function f has the property that p is a PI of . Similarly a PI of as the

form

yf ∨ yXf ∨)(h

yp ∨ , where p is a PI of . So, it can be observed that to logically OR a

function with a literal that does not belong to its variable set means to increase the

number of variables of the original function and add 1 more essential PI to the MSOP

representation of it.

)f (X

65

Figure 30. Karnaugh map representation of yXf ∨)(.

 1

 1
1

 1 1
1

 1 1

1 1
 1 1

1

 1
1

 1
1

 1
1

 1
1

 1
1

 1

 1

 1

00 01 11 10

10

00

x1 x2

01

11

x3 x4

1

0
y

The converse also holds. That is, if the given function has the orthodox property,

the resultant function will also hold the orthodox function property when it is logically

ORed with a literal, where the literal does not belong to the variable set of the function.

3. Lemma 3

Let X be a set of variables and let y be a variable such that . Then

is a non-orthodox function if is non-orthodox.

Xy ∉

yXf ⊕)()(Xf

The proof of Lemma 3 proceeds as follows;

Following can be written; yXfyXfyXf)()()(+=⊕ , and let p be a PI

of . It follows that either one of the followings is true; yXf ⊕)(

1. pyXpf =)(and 0)(=yXfp or

2. 0)(=yXpf and pyXfp =)(.

66

Thus, the PIs of yXf)(and yXf)(

y

are disjoint. Similarly, the minterms in the

maximal independent set of Xf ⊕)(form two disjoint subsets, one with and the

other with . The former represents a maximal independent set of

0=y

1=y yX)(f and the

latter of yX)(.f

Since is non-orthodox, the number of the PIs in its MSOP is greater than

the number of minterms in its MIS. The same is true for

)(Xf

yXf)(. Thus, it follows that

is non-orthodox. yXf ⊕)(

Consider following example. First, it is shown that PIs of yXf)(and yXf)(are

disjoint. Let 2121),(xxxxf += . Logically EXORing this function with literal y,

where , yields a function that is Xy ∉ yxxyxyxyxxz 212121),,(++=

)(Xf),,(21 yxxz

. Figure 31 shows

the Karnaugh map representations of and ,as it is seen from the figure

the PIs of subset yXf)(and yXf)(are disjoint.

x1 x2

 y

 0

 1

00 01 11 10

 1

 1 1 1 0

 1

 x2

x1

0 1

 1 1

 1

(a) (b)

Figure 31. (a) Shows the PIs of the function f (X) (b) Shows the PIs of function f (X) ⊕ y.

67

4. Lemma 4

 The following table is obtained from the experiments.

)(Xf))()(YgXf ∨(Yg where 0=∩ YX

Orthodox Orthodox Orthodox

Orthodox Non-orthodox Non-orthodox

Non-orthodox Orthodox Non-orthodox

Non-orthodox Non-orthodox Non-orthodox

Table 10. Type of the resultant function obtained from the logical OR of two disjoint
functions.

It follows;

)()(YgXf ∨ , where 0=∩ YX , is non-orthodox if and only if r r

both is non-orthodox.

)(Xf o)(Yg o

The proof of Lemma 4 proceeds as follows;

Because , there is a one-to-one correspondence can be established

between minterms in the maximal independent sets of and and the maximal

independent set of . Similarly, a one-to-one correspondence can be

established between PIs of and and PIs of . If the size of the

maximal independent set of or exceeds the size of the minimum sum-of-

products of or , respectively, the same will be true of . This

proves the (if) part. The proof of the (only if) part is proved in a similar way.

0=∩ YX

)(Xf

)(X)(Yg

)(Xf

)(Xf

)(Yg

)(Y

(f

)(Yg∨

)(Xf

(Xf

)(Yg

)(Yg

g∨

)

f)() YgX ∨

5. Lemma 5

Let f be a self dual function. Then f is non-orthodox if and only if f is non-

orthodox.

The proof of the Lemma 5 proceeds as follows.

68

For all functions f, is non-orthodox if and only if),...,,(21 nxxxf),...,,(21 nxxxf is

non-orthodox. That is complementing variables does not affect the orthodox property of a

function (the PIs and minterms in the maximal independent set differ only by a

complementation of the variables). In a self-dual function,

),...,,(21 nxxxf =),..., nx,(21 xxf . Thus, it follows that is non-orthodox if

and only if

),...,,(21 nxxxf

),...,,(21 nxxxf is non-orthodox.

The significance of Lemma 5 is that it identifies a set of functions with a special

property. That is, for self-dual function f, either

1. both f and f are orthodox or

2. both f and f are non-orthodox.

The self dual function in Figure 13 is symmetric. Thus, it is

orthodox. Its complement, which is also symmetric, is also orthodox. There remains the

question of whether there exists self-dual functions that are non-orthodox. Indeed, there

are.

),,(3213,2 xxxS

Consider the 5-variable function.

),,,(),,,(),,,,(432154321554321 xxxxhxxxxxhxxxxxxg ∨=

where is the 4-variable counterexample that is used by Sasao and Butler

[1] shown in Figure 15 in Chapter III. g is non-orthodox, as can be seen from Figure 33

(a). It is shown that g is self dual by showing

),,,(4321 xxxxh

),...,,(),...,,(2121 nn xxxgxxxg = . First,

),,,(),,,(),,,,(432154321554321 xxxxhxxxxxhxxxxxxg ∨= (1)

second,

 { }{ }),,,(),,,(),,,,(432154321554321 xxxxhxxxxxhxxxxxxg ∨∨=

 =),,,(),,,(432154321555 xxxxhxxxxxhxxx ∨∨

),,,(),,,(43214321 xxxxhxxxxh∨ (2)

69

 =),,,(),,,(4321543215 xxxxhxxxxxhx ∨ (3).

The last term in (2) is a consensus term. Any assignment of values to x1, x2, x3 and

x4, that make it 1 also cause exactly one of the two middle terms in (2) to be 1. Since (2)

and (3) are identical, we have identified a non-orthodox self dual function.

The significance of this result is the establishment of the existence of a non-

orthodox function, whose complement is also non-orthodox.

6. Observation 1

As it is explained earlier, the counterexamples, that have been used by Voight and

Wegner [5] in 1989 and Sasao and Butler [1] in February 2001, to prove that Disjoint

Computation Scheme Hypothesis for logical AND does not always hold, are not totally

different functions. In reality they are closely related to each other. The reason that leads

us to this observation is Lemma 1.

The 4-variable counterexample that used by Sasao and Butler [1],

is 42433213213214321),,,(xxxxxxxxxxxxxxxxxf ++++= . It is part of one family of

non-orthodox functions that has 2 don’t cares. As explained in Chapter 3, by substituting

0s and 1s, representatives of the 4 NP-equivalent classes can be determined. To transform

Voight and Wegner’s example to that of Sasao and Butler, substitute a 1 for don’t care in

minterm 1110 and a 0 for don’t care in minterm 0000 in Sasao and Butler’s

counterexample. This yields 424332132 xxxxxxxxx +++13214321),,,(xxxxxxxxf += . If

we logically AND this function with x5, where x5∉ X, we obtain a 5-variable non-

orthodox function, 542 xxx+543532153215321 xxxxxxxxxxxxxxx +++ .

Interchanging 4x with x5, yields Voight and Wegner’s counterexample;

542543432143214321432154321),,,,(xxxxxxxxxxxxxxxxxxxxxxxxxxxf +++++= .

This is shown in Figure 32. As a result, Voight and Wegner’s counterexample can

be obtained by logically ANDing Sasao and Butler’s [1] NP01 with variable x5.

70

Figure 32. (a) Minterms of x5 NP01 (b) Minterms of Voight and Wegner’s [4]
counterexample.

x5

0

1

 x3 x4

x1 x2

00

01

11

10

00 01 11 10

 1
1

1

1

 1
1

 1
1

1

 1
1

x5

0

1

 1 1

 1 1 1

 1 1 1 1

 1 1

00 01 11 10

10

00

01

11

x1 x2

x3 x4

7. Observation 2

After conducting experiments with 256 4-variable and chosen 20 5-variable, and

20 6-variable non-orthodox functions, it has been observed that complementation of the

non-orthodox functions yields almost always orthodox functions, results of the

complementations are shown in Table 11. All the ones that yield non-orthodox function

were self-dual functions and they were sharing a common point. So that, one can make an

observation that for 4, 5 and 6-variable non-orthodox functions complementing the given

non-orthodox function yields an orthodox function except a specific subset of self-dual

functions.

The following explains how a special self dual function can be constructed with

non-orthodox function property that yields an orthodox function when it is

complemented.

71

Types and numbers of the

functions

Resultant function is

orthodox

Resultant function is non-

orthodox

256 4-variable non-

orthodox functions

256 None

20 5-variable functions 19 1

20 6-variable functions 17 3

Table 11. Results for complementation of the chosen non-orthodox functions.

As in SonKarar.java’s proof, a base function f that is created by YaratNon.java

can written as follows;

(1) (nnnn xxxxxSf 1211
2

,...,2,1
... −

−
∨∨∨∨








=) , n is the number of the variables of

the base non-orthodox function, where n is even.

It is possible to create a non-orthodox function such that complementing it yields

a non-orthodox function also, by doing the following steps;

• Determine the minterms of f by using (1).

• Form a set from all possible minterms with n-variables. Then, remove the

ones that belong to f from this set.

• Promote the remaining ones to (n+1)-variable minterms by appending a 1

to their cube notations.

• Assign a 1 to each of these newly created minterms.

• Promote the f’s minterms to (n+1)-variable minterms by appending a 0 to

their cube notations.

• Assign a 1 to each of these newly created minterms.

72

Consider f, where 42433213213214321),,,(xxxxxxxxxxxxxxxxxf ++++= as an

example. f is a non-orthodox function since () 5: =fMSOPτ and () 4=fη . If we apply

the above steps to f following will be the resultant function;

.

),,,,(

5421543154325321

542543532153215321543211

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxf

++++

++++=

f1 is also a non-orthodox function since, () 9: 1 =fMSOPτ and () 8=fη as shown

in Figure 33(a), if we complement f1 resultant function, 1f becomes following;

).(

))()()()((

))()((),,,,(

5431

543253215435425321

542153215321543211

xxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxf

+++

+++++++++++++

+++++++++=

 1f is a non-orthodox function since, () 9: 1 =fMSOPτ and () 81 =fη as shown in

Figure 33 (b).

73

 (a) (b)

 1

1

 1
1

 1
1

1

1

1

x5

1

0

1

1

x3 x4

x1 x2

1

1

 1 1 1

00 01 11 10

00

00

01

11

10

01

00 01 11 10

0

11

0
10

0

x1 x2

x3 x4

 0

1

0

 0

x5

 0

 0

 0

 0

 0

 0

0

 0

0

 0

0

Figure 33. (a) Karnaugh map representation of f1 (b) Karnaugh map representation of 1f .

8. Conjecture 1

It is known that the number of the non-orthodox functions grows dramatically as

for the number of variables increases [1]. Since there are many non-orthodox functions,

the following conjecture seems reasonable.

The probability P(f) that an arbitrary n-variable function f and its complement are

non-orthodox approaches 1 as n approaches infinity.

Indeed, if Conjecture 1 is false, it is likely that approximately one-half of n-

variable functions, for large n, are orthodox and one-half are non-orthodox. This does not

seem to be case, as experimental results by Sasao and Butler show [1].

74

9. Conjecture 2

Functions can be split into two major groups; non-orthodox and orthodox

functions. One may think about the properties of the resultant functions that obtained by

logical operations of these non-orthodox and orthodox functions.

As n (the number of variables) increases, the number of the functions increases

significantly, 2 . So, that when we increase the number of the variables, it becomes hard

to analyze all the functions, since there are so many functions. It is better to randomly

pick functions among the non-orthodox and orthodox functions and perform the logical

operations by using these functions and by the help of these operations results develop

some conjectures.

n2

What follows are a number of conjectures that have been developed by the help of

experimental analysis.

Let be a non-orthodox function on variable set X, and let be any

function on variable set Y, such that

)(Xf)(Yg

0=∩ YX . Then)()(YgXf ∧ is a non-orthodox

function.

After conducting logical AND operations with 256 4-variable non-orthodox

functions, randomly picked 25 3-variable, 25 4-variable, and 25 5-variable orthodox

functions, the above statement observed. A java program, Espresso2.java, conducted the

logical ANDing operations. Table 12 shows result of the AND operations between non-

orthodox and orthodox functions.

Function Operation Function Result

256 4-variable non-

orthodox

AND 25 3-variable

orthodox

All results are non-

orthodox

256 4-variable non-

orthodox

AND 25 4-variable

orthodox

All results are non-

orthodox

256 4-variable non-

orthodox

AND 25 5-variable

orthodox

All results are non-

orthodox

Table 12. Results for logical AND operation between all 4-variable non-orthodox functions
and randomly chosen orthodox functions.

75

10. Non-orthodox Functions with 2n-variable

Chapter 3 explains how to obtain non-orthodox functions with 2n-variables,

where . ∞= ,...,3,2,1n

a. 6-variable Non-orthodox Functions
Algorithm 3 creates only one non-orthodox function for each chosen n,

where these functions are base functions. They are called base functions since they are

the simplest known functions for their variable sets. And, each of them can be written as

follows.

() nnnn xxxxxSf 1211
2

,...,2,1
... −

−
∨∨∨∨








= .

Let n=3, then the function that is dealt with a 6-variable function. Figure

25 shows a non-orthodox function that is created by Algorithm 3 for 6-variable functions.

After the creation of the base non-orthodox function, exploration of remaining 6-variable

non-orthodox function started. To do this, two Java programs used, namely Family.java

and SonKarar.java as explained in “The usage of programs” part. Lack of knowledge in

6-variable non-orthodox functions, forced the research to a brute force approach during

the investigation process of 6-variable functions. It is known that there are 64 cells

(minterms) in a 6-variable function’s Karnaugh map and Algorithm 3 showed that 46 of

them are 1 as seen in Figure 25. So, Family.java used the remaining 18 minterms as don’t

cares and created every possible 6-variable function by adding these don’t cares to the

minterms set of the base 6-variable non-orthodox function. Then, SonKarar.java made a

decision for each created function’s type.

At the end of the process, two different representatives for the 6-variable

non-orthodox functions have been found, where each of them is an incompletely

specified function. Figure 34 shows the first representative function. It has 13 don’t cares,

which suggests 2 completely specified functions. 819213 =

To be able to obtain a function, the reader needs to assign values to the

dashes in Figure 34, where each dash represents a don’t care.

76

Figure 35 shows the second representative function for the 6-variable non-

orthodox functions, this representative function has 14 dashes (don’t cares), which

suggests completely specified functions. 16384214 =

The representative function seen in Figure 35 has the minterms 110110,

101110 and 011010 as don’t cares, where these same minterms are 0s in the

representative function seen in Figure 34.

 -

x6= 1 x6= 0

x5

0

1

x3 x4

x1 x2

00

01

11

10

00 01 11 10

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1

x5

0

1

x3 x4

x1 x2

00

01

11

10

00 01 11 10

 -
1

 -
-

1

 1
1

-

 -
-

 -
1

 -
1

-

 -
1

 1
1

 1
1

 -
1

 1
1

 1
-

Figure 34. A 6-variable non-orthodox function with 13 don’t cares.

77

During the first attempt to determine the representative of the 6-variable

non-orthodox functions, minterm 001110 was picked as a don’t care. SonKarar.java

verified that it could be used as a don’t care. Later the process depicted in Figure 26

repeated by using the other potential don’t care minterms. But, in the second attempt,

minterm 001110 was kept as a 0, not a don’t care, and determining the other 6-variable

non-orthodox functions continued with remaining potential don’t care minterms. At the

end of the first attempt, 13 don’t cares have been determined. Thus, the number of the

non-orthodox functions is 8192. And, at the end of the second attempt 14 don’t cares

have been determined. Thus, the number of the non-orthodox functions is 16384.

Now the question “Are there more representatives with different numbers

of don’t cares?” might arise.

 It is believed that the 16384 6-variable completely sepecified functions

corresponding to the incompletely specified function in Figure 35 are all non-orthodox

functions. That is Espresso produces minimal solutions that have more PIs then what is

believed to be the number of minterms in the maximal independent set. It is true for

Figure 34 also.

78

 x6= 1 x6= 0

x5

0

1

x3 x4

x1 x2

00

01

11

10

00 01 11 10

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1
1

 1

x5

0

1

x3 x4

x1 x2

00

01

11

10

00 01 11 10

 -
1

 -
-

 -
1

 1
1

 -
-

 -
-

 -
1

 -
1

 -
-

 -
1

 1
1

 1
1

1

 1
1

 1
-

Figure 35. A 6-variable non-orthodox function with 14 don’t cares.

b. Simplification by Applying the Law of Distrubitivity and Without
Applying the Distrubitivity

The computer program that is used by Sasao and Butler [1] verified that

the number of the PIs in the MSOPs of the 4-variable non-orthodox functions is always 1

more than the number of the minterms in their maximal independent sets.

This same program also verified that squaring a 4-variable non-orthodox

function, f, by logically ANDing two copies of f and using disjoint variable sets for each

copy, to obtain an 8-variable AND bi-decomposable function, , yields 1 more PI than

the number of the PIs yielded by minimization of when the law of distributivity is

applied for the minimization.

2f
2f

 It has been observed from results of the experiments described in this

thesis, on the contrary to 4-variable non-orthodox functions, the number of the PIs in the

79

MSOPs of 6-variable non-orthodox functions is greater than the number of the minterms

in their maximal independent minterms sets by 2 or 1.

Consider the question, “What is the penalty of minimizing the 12-variable

AND decomposable functions by applying the distributivity law?” (12-variable functions

obtained from 6-variable non-orthodox function). Unfortunately, during the minimization

of the 12-variables functions it was not possible to use the flag –Dexact with Espresso

because of excessive computation time. Table 13 shows the computation times of

Espresso with or without –Dexact flag for various numbers of variables.

During the experiments with the 12-variable functions a total of 16384

functions are analyzed. Since, the –Dexact flag could not used for the simplification of

the 12-variable functions, the question asked above cannot be answered precisely.

Despite this fact, results of the experiments may give a rough idea about the range of the

difference between ()2: fMSOPτ

(: fMSOPτ

, minimizing the functions without breaking them into

subfunctions, and minimizing the functions by using the law of

distributivity.

)2

When 6-variable non-orthodox functions are squared to obtain AND bi-

decomposable 12-variable functions, unlike 4-variable non-orthodox functions, the

difference between the number of PIs in MSOPs that obtained by applying law of

distributivity and the number of PIs in MSOPs that obtained from application of a

conventional minimizing approach is not fixed to 1. But, the difference between

()2: fMSOPτ (conventional approach for minimization) and ()2: fMSOPτ (divide-and-

conquer approach for minimization) varies from 0 to 19. The worst case, 19 PIs

difference, has been encountered 43 times during the experiments, which yields a

percentage of 0.026%. Avarage number of the PIs in MSOPs of these 43 12-variable

AND bi-decomposable functions were 207 that yields a percentage of 9% for the

difference (19 PIs difference), which was 4% (1 PI) for the worst case of 8-variable AND

bi-decomposable functions [1].

80

Number of variables Minimization with –Dexact

flag (in milliseconds)

Minimization without

–Dexact flag (in

milliseconds)

4 62 62

5 68 67

6 74 72

7 73 72

8 2948 80

9 2072 82

10 3397 76

11 3998 178

12 No result.

(after a week run time)

732

Table 13. Average requirement computation time for minimization with Espresso.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
Determining the properties of non-orthodox and orthodox functions and

determining which type of functions are orthodox and which type of functions are non-

orthodox are not completed yet. In this immense research area, this thesis opens only a

small window and tries to show the importance of the orthodox functions in logical

design.

From the results of this thesis, the following can be stated:

1. Logically ANDing a non-orthodox (orthodox) function with a literal

yields a non-orthodox (orthodox) function.

2. Logically ORing a non-orthodox function with a literal yields a non-

orthodox function.

3. Logically EXORing a non-orthodox function with a literal yields a non-

orthodox function.

4. Complementing a non-orthodox function of 4 or 6-variables yields an

orthodox function except the self-dual non-orthodox functions (from

experimental evidence).

5. Logically ORing two functions on disjoint sets of variables yields a non-

orthodox function if and only if one of the two functions or both of them

non-orthodox, and yields an orthodox function if and only if both of them

orthodox functions.

6. Logically EXORing two functions on disjoint set of variables yields a

non-orthodox function if and only if one or both of the two functions are

non-orthodox, and yields an orthodox function if and only if both of them

are orthodox functions.

7. Logically ANDing two functions on disjoint sets of variables yields a

non-orthodox function if and only if one or both of the two functions are

non-orthodox, from experimental evidence.
83

8. It is shown that the counterexample that was proposed by Voight and

Wegner [6], is closely related with Sasao and Butler’s [1]

counterexample. So, it is the simplest known non-orthodox function.

9. The penalty paid when one uses the law of distributivity to minimize the

functions with AND bi-decomposition property, where each subfunction

is non-orthodox, grows when the number of the variables of the function

grows. (From experimental results, it can go up to 19 PIs for a 12-variable

AND bi-decomposable function, but this result is not certain as explained

in the “6-variable non-orthodox functions” part of Chapter V).

10. Two representative functions are proposed. One of them has 13 don’t

cares and the other one has 14 don’t cares. They show all 6-variable non-

orthodox functions that were discovered during the experitmental

research in a compact form. A 6-variable non-orthodox function can be

obtained from these representatives by assigning values to the don’t cares.

Unfortunately, not all 6-variable non-orthodox functions were discovered.

Also the experimental results of this thesis developed an understanding of the

importance of orthodox functions in the minimization process of practical functions. That

is, if a practical function can divided into two component functions (bi-decomposition

property) and each of the components are orthodox, then minimizing the componenets

separately and applying the law of distributivity yields MSOP for the practical function

(the divide-and conquer algorithm). Note that this algorithm gives us an improved

computation time with respect to conventional minimization algorithms [1].

Determining the types of the components may help us to choose the minimization

approach also. If either one of the component functions or both of them are non-orthodox,

then choosing divide-and-conquer algorithm cause us to pay a penalty (more PIs in the

MSOP expression then that needed) that tends to increase when the variable number of

the component functions increase. Thus, excepting the cases that both of the component

functions are orthodox, a conventional minimizing approach should be used.

84

B. FUTURE RESEARCH RECOMMENDATIONS

Note that this research only considers the conceptual perspective of the orthodox

and non-orthodox functions. That is, it tries to address the question, “What are the

properties of these functions?” rather than using the orthodox and non-orthodox functions

in a logical design, creating a prototype of this design and testing it.

Subsequent research may take the presented properties and apply them in a logical

design or may create a minimization tool that applies the following minimization

algorithm (this algorithm is proposed by Sasao and Butler [1]).

Algorithm 4

1. If f has an OR bi-decomposition, then minimize the SOPs of each

component function separately. The OR of two MSOPs gives an MSOP

for f.

2. If f has an AND bi-decomposition, determine the types of the component

functions, orthodox or non-orthodox. If both are orthodox minimize, them

separately apply the law of distributivity to derive the MSOP for f.

3. Otherwise, use a conventional approach to minimize f.

Although the proposed algorithm in Chapter IV of this thesis, Algorithm 3, can be

used to construct n-variable non-orthodox functions, where n is even, because of the large

number of functions and their excessive computation time, this thesis focused on 4 and 6-

variable non-orthodox functions and their families to address the characterization

problem of non-orthodox functions. A follow-on research may propose another algorithm

that overcomes this large-number-of-functions problem by creating randomly chosen

non-orthodox functions and continue to characterize the orthodox and non-orthodox

functions.

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

LIST OF REFERENCES

[1] Sasao, T. and Butler, T.B., On the Minimization of SOPs for Bi-

Decomposable Functions, Design Automation Conference, Proceedings of

the ASP-DAC, pp. 219-224, 2001.

[2] Kohavi, Z., Switching and Finite Automata Theory, McGraw-Hill

Computer Science Series, 1970.

[3] Sasao, T. and Butler, T.B. On Bi-Decomposoitions of Logic Functions,

International Workshop on Logic Synthesis, Lake Tahoe, California, May

18-21, 1997.

[4] Charles, H.R., Fundementals of Logic Design Fourth Edition, PWS

Publishing Company, 1995.

[5] Voight, B. and Wegner, I., A Remark On Minimal Polynomilas of Boolean

Functions, CSL’88, 2nd Workshop On Computer Science Logic

Proceedings, pp. 372-383, 1989.

[6] Voight, B. and Wegner, I., Minimal Polynomilas for the Conjunction of

Functions on Disjoint Variables Can Be Very Simple, Information and

Computation 83, pp. 65-79, 1989.

[7] Mishchenko, A., Steinbach, B., Perkowski, M., An Algorithm for Bi-

Decomposition of Logic Functions, Design Automation Conference,

Proceedings, pp. 103-108, 2001.

[8] Espresso Manual, University of Berkeley CAD Group.

http://www-cad.eecs.berkeley.edu/Software/software.html

[9] Weste, N.H.E., Eshraghian K., Principles of CMOS VLSI Design, Second

Edition, Addison-Wesley Publishing Company, 1993.

[10] Wu, T.C. An Introduction to Object Oriented Programming with Java

Second edition, McGraw-Hill, 2000.
87

http://www-cad.eecs.berkeley.edu/Software/software.html

THIS PAGE INTENTIONALLY LEFT BLANK

88

APPENDIX A. YARATNON.JAVA

/**
 * Title: YaratNon.java
 * Description: This program is used to create n-variable base non-orthodox
 * functions, where n is even.
 *
 * @author: Birol ULKER
 *
 */

import java.util.StringTokenizer;
import java.io.*;
import java.text.*;
import java.math.*;

 public class YaratNon {

 File resultFile;
 FileWriter fw;
 PrintWriter pw;
 String readName;

 public YaratNon() {

 System.out.println("Name For The Output File :))");

 try{//I am getting the file names that contain the functions' MSOP that I
would like to suqare

InputStreamReader converter = new
InputStreamReader(System.in);

 BufferedReader in = new BufferedReader(converter);
 readName = in.readLine();

 }
 catch (IOException e){}

 try {
 fw = new FileWriter(readName,true);
 pw = new PrintWriter(fw);

 }catch(Exception ex) {}
 }

89

/*
DATA MEMBERS

*/

int n = 0;
int w1;
int k = 1;
double numofMinterms;
char[][] mMinterms;
char essentialPIMinterms[][];
char nonessentialPIMinterms[][];

/*
PUBLIC METHODS

*/

 public void start () {

 describeProgram ();
 try {
 majorMinterms();
 } catch (Exception ex) {}

 fillArray();
 yazdirekrana();
 findEssentialPI();
 findNonEssentialPI();
 }

/*
PRIVATE METHODS

*/

 private void describeProgram(){

System.out.print("Creates the n-variable base non-orthodox function, n is even");

90

 }

 private void majorMinterms () throws Exception{

 System.out.print("# of variables for the NON-ORTHODOX function");
 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 String text = in.readLine();
 int i = NumberFormat.getInstance().parse(text).intValue();
 n = i;
 }
 catch (IOException e){}
 catch (ParseException pe) {}

 for (int i = n; i >= 1; i--){
 k = k*2;
 }
 }

private void fillArray(){
 mMinterms = new char[k][n];

 for (int i = 0; i <= k-1; i++){
 if (i >= 2){
 int sonuc = i;
 int sira = n-1;
 while (sonuc >= 2){
 int yaz = sonuc % 2;
 if (yaz ==1){
 mMinterms[i][sira] = '1';//out bound
 sonuc = sonuc / 2;
 sira = sira -1;
 }
 else{
 mMinterms[i][sira] = '0';
 sonuc = sonuc / 2;
 sira = sira -1;
 }
 }

 if (sonuc ==1){
 mMinterms[i][sira] = (char)49;

91

 sira = sira-1;
 for (int z = sira; z >= 0; z--){
 mMinterms[i][z] = '0';

 }
 }

 }

 if (i == 1){
 for (int j = 0; j < n-1; j++){
 mMinterms[i][j]='0';
 }
 mMinterms[i][n-1] ='1';
 }
 else if(i ==0){
 for (int h = 0; h <= n-1; h++){
 mMinterms[i][h] = '0';
 }
 }
 }
}

private void yazdirekrana (){

 for (int w = 0; w <=k-1; w++){
 for (int d = 0; d <= n-1; d++){
 System.out.print(mMinterms[w][d]);
 }
 System.out.println(" ");

 }
 }

private void findEssentialPI(){

int counter = 0;
 int yenisayac =0;
 int alet = (int) Math.pow(2.0, n+1);
 essentialPIMinterms = new char [alet][n+1];
 for (int b =0; b <= k-1; b++){

92

 counter = 0;
 for (int c = 0; c <= n-1; c++){

 if (mMinterms[b][c]==('1')){
 counter = counter +1;
 }
 }

 if (counter > 0 & counter <= (n/2)){

 for (int z =0; z <= n-1; z++){
 essentialPIMinterms[yenisayac][z] = mMinterms[b][z];
 essentialPIMinterms[yenisayac+1][z] = mMinterms[b][z];
 }
 essentialPIMinterms[yenisayac][n] = '0';
 essentialPIMinterms[yenisayac+1][n] = '1';
 yenisayac = yenisayac + 2;

 }

 }

yazdir2();
 w1 = essentialPIMinterms.length;

 }

private void findNonEssentialPI() {

int counter = 0;
 int yenisayac =0;
 int alet = (int) Math.pow(2.0, n+1);
 nonessentialPIMinterms = new char [alet][n+1];

for (int b =0; b <= k-1; b++){
 counter = 0;
 for (int c = 0; c <= n-1; c++){

 if (mMinterms[b][c]==('1')){

 counter = counter +1;
 }
 }

93

 if (counter >(n/2)){

 for (int z =0; z <= n-1; z++){
 nonessentialPIMinterms[yenisayac][z] = mMinterms[b][z];
 }

 nonessentialPIMinterms[yenisayac][n] = '1';
 yenisayac = yenisayac + 1;

 }

 }

 yazdir3();

}

private void yazdir2(){

int counteryazma = 0;
pw.println(".i " + (n + 1));
pw.println(".o 1");
int alet = (int) Math.pow(2.0, n +1);
int hey =0;

for (int w = 0; w <= alet -1; w++){//

 counteryazma = 0;
 for (int d = 0; d <= n; d++){
 if(essentialPIMinterms[w][d]== 0){
 counteryazma = counteryazma + 1;

 }

 }

 if(counteryazma != n+1){
 for (int k = 0; k<= n; k++){
 pw.print(essentialPIMinterms[w][k]);
 }
 pw.println(" 1");
 }
 }

 }

94

private void yazdir3(){
 int counteryazma1=0;
 int alet = (int) Math.pow(2.0, n+1);
 for (int w = 0; w <= alet -1; w++){
 counteryazma1=0;
 for (int d = 0; d <= n; d++){
 if (nonessentialPIMinterms[w][d]==0){
 counteryazma1 = counteryazma1 +1;
 }

 }
 if(counteryazma1 != n+1){
 for (int s = 0; s <= n; s++){
 pw.print(nonessentialPIMinterms[w][s]);
 }
 pw.println(" 1");
 }

 }
 pw.println(".e");
 pw.close();
 }

public static void main (String[] args) {

 YaratNon yaratNon = new YaratNon();
 yaratNon.start();
 }

}

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

APPENDIX B. FAMILY.JAVA

/**
 * Title: Family.java
 * Description: This program is used to create all possible functions from the
 * minterms set that consists of base functions minterms and
 * the minterms that are provided by user. Program substitute 1s
 * and 0s to the provided minterms to create all possible functions
 * from the minterms set.
 *
 *
 * @author: Birol ULKER
 *
 */

import java.util.StringTokenizer;
import java.io.*;
import java.text.*;
import java.math.*;
import javax.swing.*;
import java.util.*;

public class Family {
 String readName;
 String writeName;
 String newMinterm;
 File readFile;
 FileReader fr;
 BufferedReader in;
 File resultFile;
 FileWriter fw;
 PrintWriter pw;
 Vector v;
 String line;
 char[][] mMinterms;
 int k = 1;
 int n = 0;

 public Family() {

 v = new Vector();
 System.out.println("Which file u want to read ");

97

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);

 readName = in.readLine();
 }
 catch (IOException e){}

 System.out.println("Name of the OUTPUT file: ");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 writeName = in.readLine();
 }
 catch (IOException e){}

 }

public void start () {

 System.out.println("Stars the program");
}

 public void getMinterms(){

 do{
 System.out.println("enter the minterms you want to try ");
 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 newMinterm = in.readLine();
 }
 catch (IOException e){}
 v.add(newMinterm);

 }while (!newMinterm.equals("end"));

v.remove(v.size()-1);
fillArray();
 }

98

private void fillArray(){

 n = v.size();
 for (int i = n; i >= 1; i--){
 k = k*2;
 }

 mMinterms = new char[k][n];

 for (int i = 0; i <= k-1; i++){
 if (i >= 2){
 int sonuc = i;
 int sira = n-1;
 while (sonuc >= 2){
 int yaz = sonuc % 2;
 if (yaz ==1){

 mMinterms[i][sira] = '1';
 sonuc = sonuc / 2;

 sira = sira -1;
 }
 else{
 mMinterms[i][sira] = '0';
 sonuc = sonuc / 2;
 sira = sira -1;
 }
 }

 if (sonuc ==1){
 mMinterms[i][sira] = (char)49;
 sira = sira-1;
 for (int z = sira; z >= 0; z--){
 mMinterms[i][z] = '0';
 }
 }

 }

 if (i == 1){
 for (int j = 0; j < n-1; j++){
 mMinterms[i][j]='0';
 }
 mMinterms[i][n-1] ='1';

99

 }
 else if(i ==0){
 for (int h = 0; h <= n-1; h++){
 mMinterms[i][h] = '0';
 }
 }
 }

 startInsertnewMinterms();
}

public void startInsertnewMinterms(){
 int counter =0;
 readFile = new File(readName);
 boolean isim = true;

 for (int i = 0; i <= k-1; i++){
 counter = counter+1;
 StringBuffer str = new StringBuffer(writeName);
 try {
 fw = new FileWriter(writeName,true);
 pw = new PrintWriter(fw);
 fr = new FileReader(readFile);
 in = new BufferedReader(fr);
 }catch(Exception ex) {}

 for (int k = 0; isim ; k++){
 if ((int)str.charAt(k)>=48 && (int)str.charAt(k)<= 57){
 int j = k-1;
 System.out.println(j);
 writeName = str.substring(0,j+1)+counter+".es";
 isim = false;
 }
 }
 isim = true;
 try{
 do{
 line = in.readLine();
 if (!line .equals(".e")){
 pw.println(line);

 }
 }while (!line .equals(".e"));

 }catch(Exception e){}

100

 try{
 in.close();
 }catch(Exception e){}

 for (int j = 0; j<= n-1; j++){
 if (mMinterms[i][j]=='1'){
 pw.println(v.elementAt(j));
 }
 }

pw.println(".e");
pw.close();
 }

}

public static void main (String[] args){

 Family f = new Family();
 f.start();

 }

}

101

THIS PAGE INTENTIONALLY LEFT BLANK

102

APENDIX C. SONKARAR.JAVA

/**
 * Title: SonKarar.java
 * Description: Determines the types of the functions, orthodox or non-orthodox,
 * Espresso minimizes the functions that are created by Family.java
 * or Carpimtablosu.java. SonKarar.java uses Espresso’s output
 * files for these functions as input files.
 *
 *
 * @author Birol ULKER
 */

import java.util.StringTokenizer;
import java.io.*;
import java.text.*;
import java.math.*;
import javax.swing.*;
import java.util.*;

public class SonKarar {

 String readName;
 String writeName;
 String numFiles;
 String checkCharNum;
 File readFile;
 FileReader fr;
 BufferedReader in;
 File resultFile;
 FileWriter fw;
 PrintWriter pw;
 int n;
 int birol;

 public SonKarar() {

 System.out.println("how many files Do I need to check BOSS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);

103

 BufferedReader in = new BufferedReader(converter);

 numFiles = in.readLine();
 n = Integer.valueOf(numFiles).intValue();
 }
 catch (IOException e){}

 System.out.println("OK TELL ME THE NAME OF THE FILES BOSS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 readName = in.readLine();

 }
 catch (IOException e){}

 System.out.println("RESULT FILE NAME BOSS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 writeName = in.readLine();

 }
 catch (IOException e){}

System.out.println("WHICH CHAR SHOULD BE CHECKED BUS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 checkCharNum = in.readLine();
 birol = Integer.valueOf(checkCharNum).intValue();
 }
 catch (IOException e){}

}

 public void start(){

 int counter =0;

104

 try {
 fw = new FileWriter(writeName,true);
 pw = new PrintWriter(fw);
 }catch(Exception ex) {}
 boolean isim = true;

 for (int i = 0; i <= n-1 ; i++){
 counter = counter+1;
 StringBuffer str = new StringBuffer(readName);

 try {
 fr = new FileReader(readName);//okuma icin
 in = new BufferedReader(fr);//okuma icin
 }catch(Exception ex) {}

 for (int k = 0; isim ; k++){
 if ((int)str.charAt(k)>=48 && (int)str.charAt(k)<= 57){
 int j = k-1;
 System.out.println(j);
 readName = str.substring(0,j+1)+counter+".out";
 isim = false;
 }
 }

 isim = true;

 String line;
 int sayac = 0;
 try{
 while((line = in.readLine()) != null){
 if (line.length() > birol){
 if (line.charAt(birol)== '1'){
 sayac = sayac +1;
 }
 }

 }

 }catch(Exception e){}

 if (sayac > 1){
 pw.println("NON-ORTHODOX ");

105

 }
 else{
 pw.println("ORTHODOX FUNCTION !! ORTHODOX FUNCTION !!
ORTHODOX FUNCTION !!");
 }
 }
 pw.close();

}

public static void main (String[] args){

 SonKarar sonKarar = new SonKarar();
 sonKarar.start();

 }

}

106

APPENDIX D. CARPIMTABLOSU.JAVA

/**
 * Title: CarpimTablosu.java
 * Description: This program creates f 2. Logically AND the given n-variable
 * with itself as follows;
 * f 2= f(X)f(Y), where X∩Y=0
 *
 * @author Birol ULKER
 */

import java.util.StringTokenizer;
import java.io.*;
import java.text.*;
import java.math.*;
import javax.swing.*;
import java.util.*;

public class CarpimTablosu {

String readName;
 String inPutNum;
 String writeName;
 String numFiles;
 String line;
 File readFile;
 FileReader fr;
 BufferedReader in;
 File resultFile;
 FileWriter fw;
 PrintWriter pw;
 int n;
 Vector v;

 public CarpimTablosu() {

 System.out.println("how many functions Do I need to MULTIPLY BOSS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 numFiles = in.readLine();
 n = Integer.valueOf(numFiles).intValue();

107

 }
 catch (IOException e){}

 System.out.println(".i for new files :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 inPutNum = in.readLine();

 }
 catch (IOException e){}

 System.out.println("OK TELL ME THE FUNCTIONS YOU WANT TO SQUARE
BOSS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 readName = in.readLine();
 }
 catch (IOException e){}

 System.out.println("RESULT FILE NAME BOSS :))");
 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 writeName = in.readLine();

 }
 catch (IOException e){}
}

 public void start(){

 int counter1 =0;
 int counter2 =0;
 boolean isim1 = true;
 boolean isim2 = true;
 boolean isim3 = true;

 for (int i = 0; i <= n-1 ; i++){

108

 counter1 = counter1+1;
 counter2 = counter2+1;
 StringBuffer str1 = new StringBuffer(readName);
 StringBuffer str2 = new StringBuffer(writeName);
 v = new Vector();
 try {
 fr = new FileReader(readName);//okuma icin
 in = new BufferedReader(fr);//okuma icin
 }catch(Exception ex) {}

 try {
 fw = new FileWriter(writeName,true);
 pw = new PrintWriter(fw);
 }catch(Exception ex) {}

 for (int z = 0; isim1 ; z++){
 if ((int)str1.charAt(z)>=48 && (int)str1.charAt(z)<= 57){
 int j = z-1;
 System.out.println(j);
 readName = str1.substring(0,j+1)+counter1+".es";
 isim1 = false;
 }
 }

 isim1 = true;
 for (int k = 0; isim2 ; k++){
 if ((int)str2.charAt(k)>=48 && (int)str2.charAt(k)<= 57){
 int h = k-1;
 System.out.println(h);
 writeName = str2.substring(0,h+1)+counter2+".es";
 isim2 = false;
 }
 }

 isim2 = true;

 try{
 do{
 line = in.readLine();
 if (line.charAt(0)!='.'){
 StringBuffer str3 = new StringBuffer(line);
 for (int f = 0; isim3 ; f++){
 if ((int)str3.charAt(f)== 32){
 int u = f-1;
 line = str3.substring(0,u+1);

109

 isim3 = false;
 }
 }

 isim3 = true;
 v.add(line);

 }
 }while (!line .equals(".e"));

 }catch(Exception e){}

 try{
 in.close();
 }catch(Exception e){}

 pw.println(".i"+" "+inPutNum);
 pw.println(".o 1");
 pw.println(".e");
 pw.close();

 }

}

 public static void main (String[] args){

 CarpimTablosu carpimTablosu = new CarpimTablosu();
 carpimTablosu.start();
 }

}

110

APPENDIX E. COMPARE.JAVA

/**
 * Title: Compare.java
 * Description: This program used to determine the penalty we need to
 * pay when we minimize the functions by applying law
 * of distributivity. Decomposable functions obtained from
 * outputs of CarpimTablosu.java. Espresso used to minimize
 * both the subunctions of the decomposable function and
 * decomposable function itself. Compare.java compares
 * the results and finds the differnee between ()2: fMSOPτ and
 * ()2: fMSOPτ .
 * @author Birol ULKER
 */

import java.util.StringTokenizer;
import java.io.*;
import java.text.*;
import java.math.*;
import javax.swing.*;
import java.util.*;

public class Compare {

 String readName2;
 String readName;
 String writeName;
 String writeName2;
 String numFiles;
 File readFile;
 FileReader fr;
 BufferedReader in;
 File resultFile;
 FileWriter fw;
 PrintWriter pw;
 int n;
 int org;
 Vector v1;
 Vector vOrg;
 int birol;
 String checkCharNum;

111

 public Compare() {
 System.out.println("how many files Do I need to check BOSS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 numFiles = in.readLine();
 n = Integer.valueOf(numFiles).intValue();
 org = Integer.valueOf(numFiles).intValue();
 }
 catch (IOException e){}

 System.out.println("OK TELL ME THE NAME OF THE FILES BOSS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 readName = in.readLine();
 }
 catch (IOException e){}

 System.out.println("NAME OF THE FILES FOR THE ORIGINAL FUNCTIONS
BOSS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 readName2 = in.readLine();
 }
 catch (IOException e){}

 System.out.println("FILE NAME BOSS for the squared ones I TELL YOU NON-
ORT. OR ORT.:)) ");
 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 writeName = in.readLine();
 }
 catch (IOException e){}

112

 System.out.println("RESULT FOR THE SUBTRACTION :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 writeName2 = in.readLine();
 }
 catch (IOException e){}

 System.out.println("WHICH CHAR SHOULD BE CHECKED BUS :))");

 try{
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);
 checkCharNum = in.readLine();
 birol = Integer.valueOf(checkCharNum).intValue();
 }
 catch (IOException e){}
}

public void start(){

 v1 = new Vector();
 int counter =0;
 try {
 fw = new FileWriter(writeName,true);
 pw = new PrintWriter(fw);
 }catch(Exception ex) {}
 boolean isim = true;
 int x = 0;
 for (int i = 0; i <= n-1 ; i++){
 counter = counter+1;
 StringBuffer str = new StringBuffer(readName);

 try {

 fr = new FileReader(readName);
 in = new BufferedReader(fr);
 }catch(Exception ex) {}

 for (int k = 0; isim ; k++){

 if ((int)str.charAt(k)>=48 && (int)str.charAt(k)<= 57){

113

int j = k-1;

 readName = str.substring(0,j+1)+counter+".out";
 isim = false;
 }
 }

 isim = true;
 String line;
 String cikti;
 int sayac = 0;
 StringBuffer strOutPutSayisi;

 try{
 while((line = in.readLine()) != null){

 strOutPutSayisi = new StringBuffer(line);
 if (strOutPutSayisi.charAt(1) =='p'){

 cikti =
strOutPutSayisi.substring(2,strOutPutSayisi.length());

 v1.add(cikti);

 }

 if (line.length() > birol){

 if (line.charAt(birol)== '1'){
 sayac = sayac +1;
 }
 }

 }

 }catch(Exception e){}

 if (sayac > 1){
 pw.println("NON-ORTHODOX ");
 }
 else{
 pw.println("ORTHODOX FUNCTION !! ORTHODOX FUNCTION !!
ORTHODOX FUNCTION !!");
 }

114

 }
 pw.close();
 ikinciOkuma();
 }

public void ikinciOkuma(){

 vOrg = new Vector();
 int counter =0;
 boolean isim = true;
 int q = 0;

 for (int i = 0; i <= org-1 ; i++){

 counter = counter+1;
 StringBuffer str = new StringBuffer(readName2);

 try {

 fr = new FileReader(readName2);
 in = new BufferedReader(fr);
 }catch(Exception ex) {}

 for (int k = 0; isim ; k++){

 if ((int)str.charAt(k)>=48 && (int)str.charAt(k)<= 57){
 int j = k-1;
 readName2 = str.substring(0,j+1)+counter+".out";
 isim = false;
 }
 }

 isim = true;

 String line2;
 String cikti2;
 int sayac = 0;
 StringBuffer strOutPutSayisi;

 try{
 while((line2 = in.readLine()) != null){

115

 strOutPutSayisi = new StringBuffer(line2);
 if (strOutPutSayisi.charAt(1) =='p'){

 cikti2 =
strOutPutSayisi.substring(2,strOutPutSayisi.length());

 vOrg.add(cikti2);
 }
 }
 }catch(Exception e){}
 }
 Subtraction();

 }

 public void Subtraction(){
 double result;
 int outputv1;
 int outputvOrg;
 try {

fw = new FileWriter(writeName2,true);
 pw = new PrintWriter(fw);
 }catch(Exception ex) {}

 for (int filiz = 0; filiz < v1.size(); filiz++){
 outputv1 = Integer.valueOf(v1.elementAt(filiz).toString().trim()).intValue();
 outputvOrg = Integer.valueOf(
vOrg.elementAt(filiz).toString().trim()).intValue();
 double kim = Math.pow((double)outputvOrg,2.0);
 result = kim-outputv1;
 pw.print(result);
 pw.println(" "+filiz);
 }
 pw.close();
}

public static void main (String[] args){

 Compare compare = new Compare();
 compare.start();
 }

}

116

APPENDIX F. ESPRESSO2.JAVA

/**
 * Title: Espresso2.java
 * Description: This program is used to logically AND two functions
 * @author Birol ULKER
 */

import java.util.StringTokenizer;
import java.io.*;
import java.text.*;
import java.math.*;

public class espresso2{

 File resultFile;
 FileWriter fw;
 PrintWriter pw;
 InputStreamReader converter;
 BufferedReader in;

 StringTokenizer st;
 String function;
 String[] functionOne;
 String[] functionTwo;
 String[] resultFunction;
 String[] variables;
 int numberOfVariables;
 int numberOfElements;
 int[][] intVariables;
 boolean[] boolVariables;
 boolean append = false;

 public espresso2() {
 }

 static public void main(String[] args) throws Exception
 {
 boolean exit = false;
 char test;
 espresso2 example = new espresso2();

117

 example.InitializeStreams();

 while (!exit) {

example.GetInputs();
 example.ConstructResult();
 example.Display();
 example.CalculateFunctionVariables();
 example.CalculateFunction();
 System.out.println(" ");
 System.out.print("to continue enter any character to exit enter h:");
 test = (char) System.in.read();
 if (test == 'h') {

 exit = true;
 }
 System.in.skip(2);
 }
 }

 public void InitializeStreams() throws Exception{

 char test;
 converter = new InputStreamReader(System.in);
 in = new BufferedReader(converter);

 System.out.println("Please enter the path for the result file:");
 resultFile = new File(in.readLine());

 System.out.println("to append the results to the file enter 1 if not any other
character:");
 test = in.readLine().charAt(0);
 if (test == '1') {

 append = true;
 }

 fw = new FileWriter(resultFile.getName(), true);
 pw = new PrintWriter(fw);

 }

118

 public void GetInputs() throws Exception{

 numberOfElements = 0;

 for (int i = 0; i < 3; i++){

 if (i == 0) {

 System.out.println("Please enter the first function");
 function = in.readLine();
 st = new StringTokenizer(function, "+");
 numberOfElements = st.countTokens();
 functionOne = new String[numberOfElements];

 for(int j = 0; j < numberOfElements; j++){

 functionOne[j] = st.nextToken();
 }
 }
 else if(i == 1) {

 System.out.println("Please enter the second function");
 function = in.readLine();
 st = new StringTokenizer(function, "+");
 numberOfElements = st.countTokens();
 functionTwo = new String[numberOfElements];

 for(int j = 0; j < numberOfElements; j++){

 functionTwo[j] = st.nextToken();
 }
 }
 else {
 System.out.println("Please enter variables (ex: xyab...)");
 String text = in.readLine();
 char[] temp = new char[1];
 numberOfVariables = text.length();
 boolVariables = new boolean[numberOfVariables];

 intVariables = new int[(int)Math.pow(2.0,
numberOfVariables)][numberOfVariables];

 variables = new String[numberOfVariables];

 for (int k = 0; k < numberOfVariables; k++){

 temp[0] = text.charAt(k);

119

 variables[k] = new String(temp);
 }
 }
 }
 }

 public void ConstructResult(){

 numberOfElements = functionOne.length * functionTwo.length;
 resultFunction = new String[numberOfElements];
 int index = 0;
 for (int i = 0; i < functionTwo.length; i++){

 for (int j = 0; j < functionOne.length; j++){

 resultFunction[index] = functionOne[j].concat(functionTwo[i]);
 index++;
 }
 }
 }

 public void Display(){

 System.out.println("The multiplication of given two function is:");
 pw.println(" ");
 pw.println(" ");
 pw.println("The multiplication of given two function is:");
 for(int i = 0 ; i < resultFunction.length; i++){

 System.out.print(resultFunction[i]);
 pw.print(resultFunction[i]);
 if (i != resultFunction.length - 1) {
 System.out.print(" + ");
 pw.print(" + ");
 }
 }
 pw.println(" ");
 }

 public void CalculateFunctionVariables(){

 int number = (int) Math.pow(2.0, numberOfVariables);

120

 int n = 0;

 for (int i = 0; i < number; i++){

 n = i;

 for (int j = (numberOfVariables - 1); j >= 0; j--){

 if (n >= 0) {

 intVariables[i][j] = n % 2;
 }

 n = ((n - (n % 2)) / 2);
 }
 }
 }

public void CalculateFunction() throws Exception{

 boolean[] variables = new boolean[numberOfVariables];
 boolean functionResult = false;

 System.out.println(" ");
 pw.println(" ");
 System.out.println("The result is calculated as follow: ");
 pw.println("The result is calculated as follow: ");
 for (int p = 0; p < numberOfVariables; p++){

 System.out.print(this.variables[p] + "");
 pw.print(this.variables[p] + "");
 }

 pw.println(" ");
 pw.println(".i " + numberOfVariables);
 pw.println(".o 1");

 for (int i = 0; i < ((int) Math.pow(2.0, numberOfVariables)); i++){

 for (int j = 0; j < numberOfVariables; j++){

 if (intVariables[i][j] == 0) {

121
 variables[j] = false;

 }
 else{

 variables[j] = true;
 }
 }

 functionResult = Calculate(variables);

 if (functionResult == true) {

 System.out.println(" ");
 pw.println(" ");
 for (int k = 0; k < numberOfVariables; k++){

 System.out.print(intVariables[i][k]);
 pw.print(intVariables[i][k]);
 }
 pw.print(" 1");
 }
 }
 pw.println(" ");
 pw.println(".e");
 fw.close();
 }

 public boolean Calculate(boolean[] booleanVariables) {

 boolean result = true;

 for (int i = 0; i < resultFunction.length; i++){

 boolean[] value = new boolean[(resultFunction[i].length() / 2)];

 for (int j = 0; j < (resultFunction[i].length() / 2); j++){

 result = true;
 char[] tempTest = new char[1];
 tempTest[0] = resultFunction[i].charAt(2 * j);
 String test = new String(tempTest);

 if (resultFunction[i].charAt((2 * j) + 1) == '1') {

 for (int p = 0; p < variables.length; p++){

122

 if (test.equals(variables[p])) {

 value[j] = booleanVariables[p];
 }
 }
 }
 else{

 for (int p = 0; p < variables.length; p++){

 if (test.equals(variables[p])) {

 value[j] = !booleanVariables[p];
 }
 }
 }
 }

 for (int m = 0; m < value.length; m++){

 result = result & value[m];
 }

 if (result == true) {

 return true;
 }
 }
 return false;
 }

}

123

THIS PAGE INTENTIONALLY LEFT BLANK

124

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Deniz Kuvvetleri Komutanligi
Personel Dairesi Baskanligi
Bakanliklar Ankara, Turkiye

3. Deniz Harp Okulu Komutanligi
Kutuphane
Tuzla Istanbul, Turkiye

4. Dudley Knox Library

Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

5. Chairman, Department of Electrical and Computer Engineering
Code ECE
Naval Postgraduate School
Monterey, California 93943

6. Prof. Jon T. Butler, Code ECE/CS

Code ECE
Naval Postgraduate School
Monterey, California 93943

7. Prof. Herschel H. LOOMIS
Code ECE
Naval Postgraduate School
Monterey, California 93943

8. Dz.Y.Muh.Kd.Bnb. Onur Oral Ulker
EH. Tek. Des.S.M.
Genelkurmay Baskanligi
Ankara, Turkiye

9. LTJG Birol Ulker

Arpaemini Mah. Pazartekke Cikmazi Sok.
No: 34 D: 10 Sehremini
Istanbul, Turkiye

125

	I.INTRODUCTION AND BACKGROUND
	A. INTRODUCTION
	B. BACKGROUND
	1. Bi-decomposition
	a. Disjoint Bi-decomposition
	b.Non-disjoint Bi-decomposition
	c. Methods to Determine the Type of Disjoint Bi-decomposition
	1.Algorithm for functions with an OR-type bi-decomposition. A function f has the OR disjoint bi-decomposition property, f (X1, X2) = h1 (X1) OR h2 (X2), if and only if every product term of ISOP (irredundant sum-of-products) consists of literals
	The function should have all 1’s grouped in a sub
	Figure 3 shows a function f, �, that has the OR bi-decomposition. In this case, f can be represented as � where,�, � and �. This method is useful for functions that have a small number of inputs.
	The ISOP representation of a function is the OR of prime implicants (PIs), none of which are redundant. Application of this method relies on examining the PIs with respect to common literals and creating subsets with the literals of the PIs that have a
	For example, apply the algorithm to the function�. Let P1= ab, P2=bc and P3=de. Create the first subset with the literals of P1 call it X1, �. Examine P2 with respect to X1. Since they share the literal b, add the literals of P2 to subset X1. Proceed b
	This method can also be used for the determination of the OR decomposition property. As it is specified earlier in the discussion, bi-decomposition is a subset of decomposition that requires exactly two subfunctions, while decomposition has more subfunct
	2. Exor type bi-decomposition algorithms. Among the different ways of representing an arbitrary function is the Reed-Muller expression. In this representation, we have a standard expression for the representation of the all n-variable functions, called t
	A given function f has the EXOR bi-decomposition property,� EXOR �, if and only if every product in the PPRM for f consists of literals that belong to set X1 only or X2 only. As in the OR bi-decomposition case, we have different ways to determine whether
	Using the Reed-Muller expression
	Like ISOP’s, all implicants in a Reed-Muller PPRM
	Let�,�, be the input variables of f. Let � be the PPRM for function f, where ��are products. The algorithm forms disjoint subsets �of X, the set of variables. The algorithm examines each Pi, in turn modifying �etc. as it proceeds.
	ALGORITHM 2
	For example, apply the algorithm to the function f, �. Let P1= ab, P2=bc and P3=de. Create the first subset with the literals of the P1, call it X1, where�. Examine P2 with respect to X1 since they do not share any literals create a new subset called X2

	d. Number of the Functions with Bi-decomposition Property

	Espresso
	a. Keywords and Usage of Espresso

	II.NOTATION AND DEFINITIONS
	A. LITERAL
	B. PRIME IMPLICANT (PI)
	C.MINTERM AND MAXTERM
	D.CUBE NOTATION
	E.STRONG AND WEAK MINTERMS
	F.INDEPENDENT SET OF MINTERMS
	G.DISTINGUISHED MINTERM
	H.ISOP (IRREDUNDANT SUM OF PRODUCTS)
	I.MSOP (MINIMUM SUM OF PRODUCTS)
	J.SYMMETRIC FUNCTION
	K.UNATE FUNCTION
	L.MAJORITY FUNCTION
	M. SELF DUAL FUNCTION
	N.INCOMPLETELY AND COMPLETELY SPECIFIED FUNCTIONS
	O.NP-EQUIVALENT
	P.CONCLUSIONS OF THE CHAPTER

	III.ORTHODOX FUNCTIONS
	A. DISJOINT COMPUTATION SCHEME HYPOTHESIS (DCSH)
	1. DCSH for f (g
	2. DCSH for f ^ g

	B. SAMPLE ORTHODOX FUNCTIONS
	C. THEOREMS AND OBSERVATIONS
	1. Theorem 1
	2. Theorem 2
	3. Theorem 3

	D.CONCLUSIONS OF THE CHAPTER

	IV. NON-ORTHODOX FUNCTIONS
	A. FOUR-VARIABLE NON-ORTHODOX FUNCTIONS
	Properties of the 4-Variable Non-orthodox Functions

	B. CREATING A NON-ORTHODOX FUNCTION
	1. Discussion for Non-orthodox Functions
	2. Steps of the Algorithm 3
	
	a.To create minterms that belong to the essential PIs of the non-orthodox function that wanted to be constructed, append a dash to the end of each weak minterm. Then, expand it by substituting 0 and 1 for dash; i.e. �is a weak minterm in Figure 24, appen

	3. Verifying the Non-orthodox Function Property

	C.CONCLUSIONS OF THE CHAPTER

	V. EXPERIMENTAL RESULTS
	A.YARATNON.JAVA
	B.FAMILY.JAVA
	C.SONKARAR.JAVA
	D.CARPIMTABLOSU.JAVA
	E.COMPARE.JAVA
	F.ESPRESSO2.JAVA
	G.USAGE OF THE JAVA PROGRAMS AND ESPRESSO IN EXPERIMENTS
	H.OBSERVATIONS OBTAINED FROM EXPERIMENTS
	Lemma 1
	2. Lemma 2
	3. Lemma 3
	4.Lemma 4
	5.Lemma 5
	6.Observation 1
	7. Observation 2
	8.Conjecture 1
	9. Conjecture 2
	10. Non-orthodox Functions with 2n-variable
	a. 6-variable Non-orthodox Functions
	b. Simplification by Applying the Law of Distrubitivity and Without Applying the Distrubitivity

	VI.CONCLUSIONS AND RECOMMENDATIONS
	A.CONCLUSIONS
	B. FUTURE RESEARCH RECOMMENDATIONS

	LIST OF REFERENCES
	APPENDIX A. YARATNON.JAVA
	APPENDIX B. FAMILY.JAVA
	APENDIX C. SONKARAR.JAVA
	APPENDIX D. CARPIMTABLOSU.JAVA
	APPENDIX E. COMPARE.JAVA
	APPENDIX F. ESPRESSO2.JAVA
	INITIAL DISTRIBUTION LIST

